
ARTICLE

Superluminal X-waves in a polariton quantum fluid

Antonio Gianfrate1, Lorenzo Dominici1, Oksana Voronych2, Michał Matuszewski3, Magdalena Stobińska4,
Dario Ballarini1, Milena De Giorgi1, Giuseppe Gigli1 and Daniele Sanvitto1,5

In this work, we experimentally demonstrate for the first time the spontaneous generation of two-dimensional exciton-polariton

X-waves. X-waves belong to the family of localized packets that can sustain their shape without spreading, even in the linear

regime. This allows the wavepacket to maintain its shape and size for very low densities and very long times compared to soliton

waves, which always necessitate a nonlinearity to compensate the diffusion. Here, we exploit the polariton nonlinearity and

uniquely structured dispersion, comprising both positive- and negative-mass curvatures, to trigger an asymmetric four-wave mix-

ing in momentum space. This ultimately enables the self-formation of a spatial X-wave front. Using ultrafast imaging experi-

ments, we observe the early reshaping of the initial Gaussian packet into the X-pulse and its propagation, even for vanishingly

small densities. This allows us to outline the crucial effects and parameters that drive the phenomena and to tune the degree of

superluminal propagation, which we found to be in close agreement with numerical simulations.
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INTRODUCTION

X-waves (XWs)1,2 are a specific type of nonspreading wave packet that
maintain their transverse shape along a large field depth with respect
to Gaussian beams or other packets. Another well-known class of
nonspreading waves are solitons. However, the dispersion of solitons is
constantly compensated by nonlinearity in the medium. Instead, XWs,
as a type of nonspreading wave, are generally formed by Bessel beams
and can maintain their shape in the absence of nonlinearity3. XWs are
a topic of great interest in multiple fields, spanning from photonics to
acoustics, and are relevant in any system that is governed by the wave
equation. The first experimental demonstration of such optical waves
employed a cw laser light4. These beams are not free from diffraction,
but their transverse profile keeps its main peak well confined, whereas
the weaker lateral peaks expand upon propagation. The same
localization principle holds for pulsed XW packets that, in essence,
are a polychromatic superposition of Bessel beams5.
Since the early 1990s, XWs have been extensively studied both

theoretically and experimentally using nonspreading acoustic pulses by
Lu and Greenleaf6,7. Later, XWs were obtained with light by injecting
sub-ps laser pulses across a dispersive material3, demonstrating the
potential for signal transmission and imaging. Indeed, their applica-
tion spans different systems1: medical ultrasonic scanning; optical
coherence tomography; nondestructive evaluation of materials and
defect identification, including free space optical and radio-based
telecommunication systems; optical tweezers, such as accelerating or
guiding beams; plasmonics near-field manipulation; microscopy; and

signal transmission. In nanotechnology, the localized waves allow
reliable production of high-quality beams, which are required for
optical and electron-beam lithography with subdiffraction resolution8.
Any of these experimental cases has relevance to, for example, realistic
antennas truncated in time and space, and analytical solutions have
been found for the finite energy content cases9,10. Among their
fascinating properties, it is worth mentioning that X-waves in vacuum
also correspond to the simplest superluminal waveforms9,10. This
indicates that XWs can have an effective velocity higher than c, which
emerges from the superposition of ordinary Bessel beams4,5 and, at the
same time, conform to the constraints of special relativity and the
causality principle1.
Renewed interest in the XWs is also driven by their potential

applicability in the field of atomic Bose-Einstein condensates (BEC)11

and dissipative polariton condensates12. Both of these systems bear
deep similarity to the electromagnetic case because they can be
described by nonlinear Schrödinger equations13,14. Polariton XW
solutions were predicted not only for microcavity polaritons12, but
also in the case of Bragg polaritons by periodically embedding
quantum wells directly into multilayer stacks15. In both cases, the
XW solutions rely on the locally hyperbolic dispersion (that is,
including both negative and positive curvatures). Several theoretical
proposals have been developed on this topic as well as on the
possibility to obtain spontaneous X-waves upon exploitation of the
nonlinearities16–19. Recently, a quantum description of XWs has been
developed, highlighting the difference in the entanglement properties
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between externally imprinted and spontaneously generated states20.
However, X-waves have not yet been imprinted or generated in a BEC.
Our work bridges X-wave concepts to hybrid fluids of light and

matter. We report the first experimental self-generation of an XW
packet in a two-dimensional (2D) exciton-polariton superfluid starting
from an initial Gaussian photonic pulse. This effect has been achieved
upon fine tuning of the polariton nonlinearity and proper balance of
the positive/negative effective mass ratios along the transverse/long-
itudinal directions. Using ultrafast digital holography, the experiments
show the initial pulse reshaping and propagating, which demonstrat-
ing its longitudinal localization down to vanishing densities of the
packet. It is noteworthy that the 2D polariton geometry allows the
axial XW density and phase profiles along the propagation direction to
be determined. The optical access to the wavefunction phase allows
highlighting some peculiar topological defects associated with the
specific way we obtain the X-wave. Moreover, upon uniquely changing
the initial amount of nonlinearity, we show a tunable superluminal
peak speed with respect to the group velocity of the polariton system.
Microcavity exciton polaritons21–27 are bosonic particles that result

from the mixing of two quasiparabolic modes, the quantum well
(QW) excitons and the microcavity (MC) photons, with dispersions of
highly unbalanced curvatures. The anticrossing feature of the bare
modes, associated with the strong coupling regime, finally produces a
highly nonparabolic shape for one of the new normal modes, namely,
the lower polariton branch (LPB)28. In particular, the presence of an
inflection point, representing both a maximum of the group velocity
(vg= ∂ω/∂k) and an inversion of the so called diffusive effective mass
[mdiff= (∂2ω/∂k2)− 1] (see Ref. 29), is the fundamental reason for the
spontaneous XW formation. Polaritons also exhibit very strong
nonlinearities30,31 that are able to achieve superfluid regimes32,33 that
support quantized vortices34,35, or lead to several patterns36–39 and
soliton state formations40,41. However, we note that the XW, a
solution that exists in the linear limit, is fundamentally different from
the 2D bright solitons discussed in Refs 41, 42. In this case, localization
was achieved in the so called bistability regime, in which the soliton
wave packet was supported by an additional background pump. While
the solitonic wave packets are well suited for polaritonic devices that
utilize nonlinearity, such as logic gates or transistors43, they are
inherently fragile against particle loss that is unavoidable in any
photonic system. On the other hand, linearly localized solutions are
fundamentally robust against losses and have potential applications in
data transport between distant system components. This approach has
been demonstrated to be efficient in overcoming performance bottle-
necks in electronic signal processing44.

MATERIALS AND METHODS

Experimental methods
The experiments described here are performed on a GaAs/AlxGaAs
MC composed of three QW enclosed by two distributed Bragg
reflectors, the details of which can be found in Refs 45, 46. The
positions inside the MC are set to have the QWs in the antinodes of
the confined photonic field. The strong coupling of the two bare
modes, the photonic (ψC) and excitonic (ψX) fields, leads to two new
hybrid modes: the LPB and the upper polariton branch (UPB). This
sample is also grown on a specifically doped GaAs substrate with a
transparency window centered at 830 nm, which consequently allows
operation in a transmission configuration. The sample is kept at a
constant temperature of 10 K using a cryostat to avoid thermal
ionization of excitons.
This experiment uses an ultrafast digital holography setup

(described in Refs 45, 46), in which the emission signal is allowed

to interfere with a homodyne, uniform, reference plane wave. The two
beams are sent at slightly different incidence angles onto a charge-
coupled device camera to collect the associated interference pattern.
The resulting interferograms are analyzed with a digital fast Fourier
transformation to obtain the amplitude (ψ) and the phase (ϕ) of the
complex wavefunction in real space. A delay line on the reference
optical path allows us to scan the signal with respect to time by
changing the time delay of the reference. The temporal resolution of
this technique is mainly limited by the 2.5 ps duration of the laser
pulse, which allows selective excitation of the lower polariton mode
upon proper tuning at ~ 836 nm. The time step was set to 0.5 ps.
The circular polarization is set in the excitation beam to generate

only one spin population and consequently maximize the interactions.
The same reshaping effects are obtained upon a double total
population density when using a linearly polarized excitation
beam. The pump spot is set with a FWHMx,y of 10 μm
(FWHMkx,ky= 0.6 μm− 1 in reciprocal space), to facilitate the non-
linear scattering process in real space and have a wide enough spot size
to cover the dispersion range of interest in k-space.

Numerical methods
To illustrate the dynamical X-wave formation and localization induced
by the nonlinearity, we performed simulations starting from a
Gaussian initial state Ψ(x,y)= 1/(2πσ2) exp{− (x2+y2)/(2σ2)}, where
σ= FWHM/(2sqrt(2ln2)) and FWHM is the full-width at half-
maximum of the Gaussian spot. The GPE described in the text was
solved numerically using the fourth-order Runge-Kutta method.
The device parameters were as follows: mC= 4.27× 10− 5 me,
γC= 0.2 ps− 1, γX= 0.2 ps− 1, g= 2× 10− 3 meV μm2, D=− 0.55 meV
and ΩR= 5.4 meV. The details of the numerical method are described
in Ref. 47. Numerical computations were performed with a Zeus
cluster in the ACK ‘Cyfronet’ AGH computer center.

RESULTS AND DISCUSSION

Dispersion and effective masses
The high-quality Q factor of our microcavity indicates that the LPB
and UPB modes are well separated with respect to their linewidths.
The two modes can hence manifest their dispersions, observed upon
collecting the off-resonance excited fluorescence as shown in
Figure 1a. Here, we will focus our attention only on the LPB, which
shows a strong nonparabolic behavior at higher k vectors. Further,
experimental details can be found in the ‘Methods and Materials’
section. The 3D representation of the LPB dispersion surface E(kx,ky)
is shown in Figure 1b in a region around the inflection point
(kx~1.62 μm− 1). In the figure, we highlight the nonparabolic
characteristics by reporting two orthogonal crosscuts along the long-
itudinal direction (// blue curve, centered at ky= 0) and along the
transverse direction (⊥ red curve, at kx= 2.15 μm− 1). The noteworthy
feature that can be appreciated from the 3D representation is the
opposing curvature of the two slices around the inflection point.
Moving along the central longitudinal line, the dispersion geometry

always corresponds to a null transverse velocity [∂ω/∂ky(kx,ky= 0)].
The longitudinal group velocity instead grows to a maximum
(1.5 μm ps− 1) at the inflection point and decreases for larger, in-
plane longitudinal momenta (kx), Figure 1c. At the same time, both
the longitudinal and transverse curvatures of the dispersion surface
change as a function of kx, as clearly illustrated in Figure 1d. In
particular, the curvatures have opposite signs inside the investigated
region (the explored range is denoted by dots or by vertical ticks in
any of the four panels), which corresponds to opposing effective
masses.
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Polariton X-wave
We resonantly excite the polariton superfluid with 2.5 ps laser pulses
tuned at ~ 836 nm and focused to a ~ 10 μm diameter spot. In
Figure 2, we experimentally show the dynamics of the effect optimized
using k= 2.35 μm− 1 and 75 μW of pumping power. Figure 2a displays
the modulus, and Figure 2b shows the phase of the polariton X-wave
packet. The time zero in the temporal evolution is set when the pump
stops injecting polaritons, which are then free to evolve within their
lifetime. Initially, the density distribution reveals a Gaussian shape
with a rather homogeneous phase (with just a weak radial gradient
associated with the beam curvature). However, after 10 ps, the X-wave
shape can be clearly distinguished. At the successive t= 20 and 30 ps
snapshots, we can detect just a small vertical spread of the packet, but
without a significant distortion in the shape. Notably, the longitudinal
waist size remains essentially constant, despite the polariton lifetime
being as short as ~ 10 ps45,46.
An interesting feature can be seen in the phase map of Figure 2b:

the appearance of four quantized vortices, at the edges of the packet.
These vortices are shown in detail in the maps of Figure 2c and 2d,
overlapping the streamlines of the phase gradient (red arrows) and the
dots of the phase singularities (blue and green arrow circles). The
diagonally displaced vortex-antivortex pairs are an expression of the
hyperbolic topology of the driving in-plane momenta. Indeed, as
evident in the center of the packet, the flows are pushing the
polaritons inwards along the propagation direction, which keeps the
signal compact, and outwards in the transverse direction.
The dynamics of the polariton superfluid were successfully modeled

within the mean field approximation by a set of coupled equations

equivalent to the Gross-Pitaevskii Equation (GPE):

i_ d
dtcC ¼ OR

2 cX þ _gC
2i � _2

2mC
∂2x � _2

2mC
∂2y

� �

cC

i_ d
dtcX ¼ OR

2 cC þ _gX
2i þ g cXj j2

� �

cX

ð1Þ

where mC is the effective mass of the microcavity photons, ΩR is the
Rabi frequency coupling the photonic ψC and excitonic ψX fields, γC
and γX are the associated decay rates and g is the nonlinear interaction
term in the exciton component. Further details are given in the
‘Methods and Materials’ section. The results shown in Figure 2e and
2f, represent the amplitude and phase maps, respectively, at 27.5 ps,
demonstrating strong agreement with the main experimental features.
The modulation in the tail of the signal that can be seen in the
theoretical predictions shown in Figure 2e and 2f, could be due to the
interference with a weak nonlinear scattering to opposite kx states.
This modulation may be not visible in the experimental data due to
the achievable temporal resolution (2.5 ps limited by the reference
pulse).
The opposite transverse and longitudinal effective masses force the

GPE, which describes the polariton dynamics, to show a highly
hyperbolic character. This behavior is crucial to sustain the X-wave
phenomena, which demonstrates that the shape conservation does not
rely on the nonlinearity, as in the case with solitons37,41, but rather on
the dispersion morphology. It was previously shown that an X-shaped
initial profile can be a stationary solution of the linear GPE model12.
We experimentally demonstrate that in a weakly nonlinear regime, an
initial Gaussian state can be triggered to spontaneously evolve into a
steady X-wave via an early four-wave mixing (FWM) process.
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Figure 1 Polariton dispersion. (a) Experimental dispersion under nonresonant pumping. The superimposed points (different colors) on the right side of the
lower branch represent the polariton emission under resonant excitation at different momenta k, and the solid lines are theoretical fits. (b) 3D representation
of the E(kx,ky) dispersion surface around the inflection point, highlighting the central longitudinal crosscut (blue line) and an exemplificative transverse one
(red line). (c) First derivative (group velocity) of the dispersion along the propagation direction (//, blue) and the transverse direction (⊥, red). The black dots
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explored k region that maximizes the effective mass anisotropy.
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Nonlinear triggering
Although the nonlinearities play no role in the propagation and
maintenance of the signal, they are crucial for the initial reshaping of
the Gaussian pulse into the X-packet. Indeed, the choice of the initial spot
size in real space (density FWHM ~10 μm) produces a proper extension

in the reciprocal (momentum) space (FWHM ~0.6 μm−1), thus
exploiting the negative curvature. The nonlinearity allows an asymmetric
reshaping in momentum space based on the dispersion shape. Thus, an
elongated spot in the reciprocal k-space is created along the direction of
propagation, signifying a stronger confinement in real space.
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Figure 2 Dynamical XW sequence. (a and b) Spatial distribution of the polariton wavefunction amplitude (a) and phase (b) at different time frames (t=−10,
0, 10, 20 and 30 ps). The t=0 corresponds to the end of pulse injection and consequently to the start of the free evolution. The phase map is represented
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To highlight the impact of the nonlinearities, the temporal
dynamics at four different pumping powers are shown in Figure 3.
At a low density, as shown in Figure 3a, the reshaping is absent and
the signal spreads uniformly in both the longitudinal and transverse
directions. However, an anisotropy in the intensity distribution
between the longitudinal and transverse diffusions starts to appear
when increasing the pump power, as shown in Figure 3b and 3c. At
75 μW, the reshaping reaches its optimum, shown in Figure 3d, and
the packet shows a very well-defined X-shape, together with a small
circular tail. Above this power, the dynamics enter into a strongly
nonlinear regime (between 100 and 500 μW), where the redistribution
due to high densities involves radial counterflows, which reshape the
signal beyond a recognizable X-packet. Such a regime occurs just
before the onset of the dynamical nonlinearity inversion, leading to the
real space collapse described in Ref. 37.
The role played by the in-plane momentum kx is shown in Figure

3e–3h, where only the injection angle is changed, while keeping the
initial density constant. In Figure 3e, despite the large nonlinearities
that are as high as in Figure 3d, no redistribution is observed. Upon
gradually increasing the injection angle, shown in Figure 3f and 3g, the
packet shows again a marked anisotropy in its diffusion along the
longitudinal and transverse directions. This is due to the larger
difference between the longitudinal and transverse effective masses
in the excited region of the dispersion. This difference reaches its
maximum at 2.35 μm− 1, where the reshaping is optimized, Figure 3h.

Localization and superluminality
We now focus on the propagation of the polariton XWs. Figure 4a
shows the time evolution of the normalized polariton population (blue
points) together with the pump pulse temporal envelope (solid red
curve). The t= 0 ps has been chosen to be at the maximum of the
polariton population, which is when the pulse has essentially finished

its pumping action and the polaritons free evolution starts. The
growing longitudinal/transverse anisotropy can be appreciated upon a
visual comparison between the associated amplitude time space charts
in Figure 4b (longitudinal) and Figure 4d (transverse), as well as from
the associated phase charts in Figure 4c and 4e. In the longitudinal
charts, the signal propagates for 40 μm with a constant speed of
~ 1.20 μm ps− 1, and a final width very similar to the original shape.
However, in the transverse maps, the width reveals the standard wave
packet diffusion. This is clearly confirmed in Figure 4g and 4h, where
both the longitudinal and transverse profiles are reported to be t= 0
and t= 30 ps, respectively, together with their associated Gaussian fits.
The power dependence of the differential spreading along the two

directions is analyzed in detail in Figure 5a. Here, the temporal
evolution of the longitudinal and transverse FWHM densities is shown
for different excitation powers, corresponding to the previous Figure
3a–3d. For the lowest power (P= 22 μW, red line), the reshaping is
completely absent, and the wave packet expands continuously in both
directions. The longitudinal (filled dots) and transverse (open dots)
spreading have the same spreading rate. At larger injected power, and
consequently stronger nonlinearity, the degree of anisotropy between
the longitudinal and transverse size gradually increases (P= 45 μW
and P= 53 μW are indicated by the orange and green dots, respec-
tively), leading to the suppression of the longitudinal spread. Strik-
ingly, for P= 75 μW, the packet undergoes a longitudinal squeezing
during the first 10 ps. This is associated with the nonlinear redistribu-
tion into the X-wave packet, whose shape can be neatly distinguished
in the previous maps of Figure 3d. Based on these features, we may
state that it is possible to qualitatively distinguish between the three
main dynamic phases: pulse injection (−5÷0 ps), initial redistribution
(0÷10 ps) and propagation (10÷30 ps). The numerical simulations of
Figure 5b reproduce the experiments in a perfect agreement with our
trends. We again note that this phenomenology is different from the
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bright solitons that are sustained under a cw background pump beam
as in Refs 41, 42. In that case, the pump keeps the background just
below the bistability threshold over its width and feeds the nonlinear
maintenance of the moving soliton, which can propagate only within

the pump spot. Instead, here, while the transverse width is not
conserved (in agreement with the lateral positive mass), the long-
itudinal width is preserved along the propagation length of more than
40 μm, despite the packet arriving to this position with only a very
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small fraction of the initial population and density (one order of
magnitude lower). Furthermore, the bright solitons in Refs 41, 42
exhibit a propagation speed that is set uniquely by the injection k of
the cw background pump and, being dissipative solitons, is not
affected by the seed pulse. In contrast, the X-wave offers the possibility
to tune the group velocity of the packet using the incident in-plane
momentum, and can furthermore achieve a fine degree of tunability of
the peak speed using the power control of the exciting pulse.
Indeed, our wave packet exhibits one of the most interesting

signatures of Bessel X-pulses, superluminality. This effect is driven
by the Bessel cone angle θ associated with the X-pulses48–51, whose
peak moves (in vacuum) at v= c/cos(θ). In any system, the role of c is
played by the group velocity vg as obtained from the specific dispersion
slope (illustrated for polariton waves in Figure 1). Here, we experi-
mentally observe an increase in the speed of the density peak with
respect to the center-of-mass speed, up to a value of 6% in the case of
the largest power, as shown in Figure 5c. We can evaluate that a
maximum angle θ~18° is reached for P= 75 μW. In terms of
transverse in-plane momentum, this angle corresponds to a
δky~± 0.6 μm− 1. These lateral k-states are induced in the initial
FWM along the (nearly flat) transverse direction of the dispersion.
Numerical simulations performed at different initial populations
confirm the trend of the increase in the peak velocity with respect
to the center-of-mass, as shown in Figure 5d. We stress that different
degrees of superluminal speed could be achieved without changing any
other parameter (for example, spot width in real/k-space, central

momentum, central energy, pulse width) but only the pulse power,
consequently tuning the strength of the nonlinearity.
A complementary nonlinear effect is obtained along the longitudinal

direction. As introduced in Figure 2, a specific feature of our
structured polariton XW is represented by the leading and trailing
islands that are developed around the main packet during the initial
reshaping. These features can be neatly resolved due to the strong
coherence properties of polaritons. Indeed, such coherence is main-
tained during the interference phenomena between the nonlinearly
induced counter-propagating flows. In particular, the faster vg(kx)
leading and the slower vg(kx) trailing subpackets represent the FWM
states that are initially created at smaller (kx− δkx) and larger (kx+δkx)
longitudinal momentum, respectively. The counter intuitive associa-
tion between the group velocity and momentum differentials are due
to the negative curvature of the dispersion. Instead, the circular shape
of the interference between the three packets suggests that the two
excited FWM states have a larger transverse extension in momentum
space (ky) with respect to the primary transverse profile. In Figure 6a,
we report both the amplitude and phase longitudinal profiles
(corresponding to P= 75 μW and t= 7.5 ps) to highlight the presence
of two sharp π-jumps in front and behind of the main packet, which is
in a perfect spatial correspondence to dark dips in the density profile.
The ignition time of such π-jumps is also visible in the time space
charts of Figure 4c at t≈7.5–8.0 ps. This is also the time of the vortex–
antivortex pair generation in real space (see the main sequence in
Figure 2). It is interesting to note that the appearance of such dark
lines themselves is like a couple of phase singularities (quantum
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vortex) in the time space domain of Figure 4c. In general, the
nonlinear self-development of a π-jump may be a signature of a dark
soliton37,52, which can be sustained in 2D condensates by repulsive
interactions53. In Figure 6b, we report the evolution of the phase
profiles at equidistant time frames (every 2.5 ps). The profiles indicate
how the sharp π-jump is only present in a given frame at early times,
before being smoothed as expected, due to a loss in the intensity.
Hence, we may conclude that the dark soliton is a transient structure,
a result of the nonlinear way we ignite the XW in the polariton fluid.
The dark soliton is then washed out, without representing an intrinsic
feature of the XW itself, as opposed to the longitudinal localization,
which is instead preserved in time.

CONCLUSIONS

We have experimentally demonstrated the possibility to excite a
peculiar class of traveling localized wave packets, called X-waves, in
2D exciton-polariton fluids. Self-generation of an X-wave out of a
Gaussian excitation spot is obtained via a weakly nonlinear asym-
metric process with respect to two directions of the nonparabolic
polariton dispersion. The dynamics of the packet are observed using
ultrafast imaging, revealing a propagation over tens of micrometers,
only limited by the polariton dissipation. We have tuned the
nonlinearity and the injected in-plane momentum to achieve both
the optimal effect and preserve the longitudinal localization, even
when the density fades away. Different degrees of superluminality have
been achieved and associated with the variable transverse angular
aperture induced by the nonlinear process in its early stage. Polariton-
based all-optical platforms are devised as robust candidates to study
the fundamental science connected to 2D X-wave packets and possible
future applications exploiting them in signal propagation.

Alternative 2D platforms are represented by, for example, multilayer
stacks supporting Bloch surface waves (BSWs) at the external interface.
These surface modes naturally exhibit very large in-plane speed, which
converts into long-range propagation, with negative mass dispersion
and have exhibited exploitable nonlinearity upon coupling with an
organic layer that is stable up to room temperature54. The BSWs are
enabling competitive systems compared to surface plasmon resonance
for label-free high-sensitivity biosensing55. Such systems also offer the
possibility to easily pattern the external open surface to realize planar
guiding or focusing elements56, or even tilted, top-grating, launching,
diffraction-free surface waves57, analogous to what has been previously
realized with plasmonic systems58. Hence, BSW polaritons are a
natural evolution for the study of X-wave pulse propagation over
hundreds of μm and their exploitation for novel 2D optical tweezers
and sensing combined functionalities.
Both QW-MC and BSW polariton platforms represent nanopho-

tonic technologies that are characterized by a strong and tunable χ(3)

nonlinearity resulting from polariton-polariton interactions. The
third-order nonlinearity governs not only the FWM process but
also other useful phenomena, such as self- and cross-Kerr modulation.
Thus, we expect that they will be highly pronounced in our
polariton superfluid. Tunable, efficient, nonlinear interactions are a
‘holy grail’ in photonic and optical systems59,60 and quantum
computing61 for building the optical gates necessary to construct a
quantum computer.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
LD and MM proposed the experiments. AG, LD, DB, MDG, GG and DS set up
the laboratory configurations. AG and LD performed the experiments and
analyzed the data. OV, MM and MS developed the theory, performed
numerical simulations and provided the theoretical interpretations. All the
authors discussed the results. AG, LD, OV, MM, MS and DS wrote the
manuscript. DS supervised the research.

ACKNOWLEDGEMENTS

We thank R Houdré and A Bramati for the microcavity device. AG, LD, DB,
MDG, GG and DS are supported by the European Research Council POLA-
FLOW Grant 308136 and the Italian MIUR project Beyond Nano. MS and OV
are supported by the NCN Grant no. 2012/04/M/ST2/00789 and MNiSW
Iuventus Plus project no. IP 2014 044873. MS acknowledges support from the
FNP project FIRST TEAM/2016-2/17. MM acknowledges support from NCN
Grant 2015/17/B/ST3/02273.

1 Recami E, Zamboni-Rached M, Hernandez-Figueroa HE. Localized waves: a scientific
and historical introduction. In: Hernández-Figueroa HE, Zamboni-Rached M, Recami E,
editors. Localized Waves, Wiley Series in Microwave and Optical Engineering. Hoboken,
N.J.: Wiley-Interscience; 2008.

2 Recami E, Zamboni-Rached M. Localized waves: a review. In: Hawkes P, editor.
Advances in Imaging and Electron Physics, Vol. 156. Amsterdam: Elsevier; 2009.
p235–353.

3 Sõnajalg H, Rätsep M, Saari P. Demonstration of the Bessel-X pulse propagating with
strong lateral and longitudinal localization in a dispersive medium. Opt Lett 1997; 22:
310–312.

4 Durnin J, Miceli Jr JJ, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58:
1499–1501.

5 Salo J, Fagerholm J, Friberg AT, Salomaa MM. Unified description of nondiffracting X
and Y waves. Phys Rev E 2000; 62: 4261–4275.

6 Lu JY, Greenleaf JF. Ultrasonic nondiffracting transducer for medical imaging. IEEE
Trans Ultrason Ferroelect Freq Control 1990; 37: 438–447.

7 Lu JY, Greenleaf JF. Nondiffracting X waves-exact solutions to free-space scalar wave
equation and their finite aperture realizations. IEEE Trans Ultrason Ferroelect Freq
Control 1992; 39: 19–31.

0
–20

a

b

–15 –10 –5 0 5 10 15

–10 0
x (μm)

x - vgt (μm)

10 20

1

10–1

10–2

t = 0 ps

t = 25 ps

�
 (

ra
d)

�
 (

ra
d)

2π 2π

2π

4π

0

2π

4π

0

�
 (

no
rm

. u
n.

)

π

π
2

Figure 6 Transient dark soliton. (a) Phase (solid orange line) and amplitude
(blue dots) central crosscut profiles along the propagation direction at
t=7.5 ps and for P=75 μW. (b) Phase profiles along the longitudinal axis at
fixed time intervals of 2.5 ps. The top line represents t=0 ps, while the
subsequent profiles are mutually shifted down the same amount for clarity.
The phase profiles are shown with respect to the moving frame of reference,
and the phase is forced to be constant at the edge of the packet.

Generation of 2D exciton-polariton X-waves
A Gianfrate et al

8

Light: Science & Applications doi:10.1038/lsa.2017.119



8 Yalizay B, Ersoy T, Soylu B, Akturk S. Fabrication of nanometer-size structures in metal
thin films using femtosecond laser Bessel beams. Appl Phys Lett 2012; 100: 031104.

9 Zamboni-Rached M, Recami E, Hernández-Figueroa H. New localized superluminal
solutions to the wave equations with finite total energies and arbitrary frequencies. Eur
Phys J D 2002; 21: 217–228.

10 Zamboni-Rached M, Fontana F, Recami E. Superluminal localized solutions to Maxwell
equations propagating along a waveguide: the finite-energy case. Phys Rev E 2003; 67:
036620.

11 Conti C, Trillo S. Nonspreading wave packets in three dimensions formed by an
ultracold bose gas in an optical lattice. Phys Rev Lett 2004; 92: 120404.

12 Voronych O, Buraczewski A, Matuszewski M, Stobiñska M. Exciton-polariton localized
wave packets in a microcavity. Phys Rev B 2016; 93: 245310.

13 Efremidis NK, Siviloglou GA, Christodoulides DN. Exact X-wave solutions of the
hyperbolic nonlinear Schrödinger equation with a supporting potential. Phys Lett A
2009; 373: 4073–4076.

14 Conti C. Generation and nonlinear dynamics of X waves of the Schrödinger equation.
Phys Rev E 2004; 70: 046613.

15 Sedov ES, Iorsh IV, Arakelian SM, Alodjants AP, Kavokin A. Hyperbolic metamaterials
with bragg polaritons. Phys Rev Lett 2015; 114: 237402.

16 Couairon A, Gaižauskas E, Faccio D, Dubietis A, Di Trapani P. Nonlinear X-wave
formation by femtosecond filamentation in Kerr-media. Phys Rev E 2006; 73: 016608.

17 Kolesik M, Wright EM, Moloney JV. Dynamic nonlinear X waves for femtosecond pulse
propagation in water. Phys Rev Lett 2004; 92: 253901.

18 Conti C, Trillo S, Di Trapani P, Valiulis G, Piskarskas A et al. Nonlinear electromagnetic
X waves. Phys Rev Lett 2003; 90: 170406.

19 Di Trapani P, Valiulis G, Piskarskas A, Jedrkiewicz O, Trull J et al. Spontaneously
generated X-shaped light bullets. Phys Rev Lett 2003; 91: 093904.

20 Ciattoni A, Conti C. Quantum electromagnetic X waves. J Opt Soc Am B 2007; 24:
2195–2198.

21 Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices. Nat Mater 2016; 15:
1061–1073.

22 Byrnes T, Kim NY, Yamamoto Y. Exciton-polariton condensates. Nat Phys 2014; 10:
803–813.

23 Dagvadorj G, Fellows JM, Matyjaśkiewicz S, Marchetti FM, Carusotto I et al. None-
quilibrium phase transition in a two-dimensional driven open quantum system. Phys
Rev X 2015; 5: 041028.

24 Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod
Phys 2010; 82: 1489–1537.

25 Amo A, Sanvitto D, Laussy FP, Ballarini D, del Valle E et al. Collective fluid dynamics of
a polariton condensate in a semiconductor microcavity. Nature 2009; 457: 291–295.

26 Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P et al. Bose-Einstein
condensation of exciton polaritons. Nature 2006; 443: 409–414.

27 Balili R, Hartwell V, Snoke D, Pfeiffer L, West K. Bose-Einstein condensation of
microcavity polaritons in a trap. Science 2007; 316: 1007–1010.

28 Kavokin AV, Baumberg JJ, Malpuech G, Laussy FP. Microcavities, 2 edn. Oxford, New
York: Oxford University Press, 2017.

29 Colas D, Laussy FP. Self-interfering wave packets. Phys Rev Lett 2016; 116: 026401.
30 Walker PM, Tinkler L, Skryabin DV, Yulin A, Royall B et al. Ultra-low-power hybrid light-

matter solitons. Nat Commun 2015; 6: 8317.
31 Vladimirova M, Cronenberger S, Scalbert D, Kavokin KV, Miard A et al. Polariton-

polariton interaction constants in microcavities. Phys Rev B 2010; 82: 075301.
32 Amo A, Lefrère J, Pigeon S, Adrados C, Ciuti C et al. Superfluidity of polaritons in

semiconductor microcavities. Nat Phys 2009; 5: 805–810.
33 Berceanu AC, Dominici L, Carusotto I, Ballarini D, Cancellieri E et al. Multicomponent

polariton superfluidity in the optical parametric oscillator regime. Phys Rev B 2015; 92:
035307.

34 Amo A, Pigeon S, Sanvitto D, Sala VG, Hivet R et al. Polariton superfluids reveal
quantum hydrodynamic solitons. Science 2011; 332: 1167–1170.

35 Sanvitto D, Marchetti FM, Szymańsk MH, Tosi G, Baudisch M et al. Persistent currents
and quantized vortices in a polariton superfluid. Nat Phys 2010; 6: 527–533.

36 Whittaker CE, Dzurnak B, Egorov OA, Buonaiuto G, Walker PM et al. Polariton pattern
formation and its statistical properties in a semiconductor microcavity. Preprint at:
arXiv:161203048, 2016.

37 Dominici L, Petrov M, Matuszewski M, Ballarini D, De Giorgi M et al. Real-space
collapse of a polariton condensate. Nat Commun 2015; 6: 8993.

38 Manni F, Lagoudakis KG, Liew TCH, André R, Deveaud-Plédran B. Spontaneous pattern
formation in a polariton condensate. Phys Rev Lett 2011; 107: 106401.

39 Wertz E, Ferrier L, Solnyshkov DD, Johne R, Sanvitto D et al. Spontaneous formation and
optical manipulation of extended polariton condensates. Nat Phys 2010; 6: 860–864.

40 Ostrovskaya EA, Abdullaev J, Desyatnikov AS, Fraser MD, Kivshar YS. Dissipative
solitons and vortices in polariton Bose-Einstein condensates. Phys Rev A 2012; 86:
013636.

41 Sich M, Krizhanovskii DN, Skolnick MS, Gorbach AV, Hartley R et al. Observation of
bright polariton solitons in a semiconductor microcavity. Nat Photonics 2012; 6:
50–55.

42 Egorov OA, Gorbach AV, Lederer F, Skryabin DV. Two-dimensional localization of
exciton polaritons in microcavities. Phys Rev Lett 2010; 105: 073903.

43 Ballarini D, De Giorgi M, Cancellieri E, Houdré R, Giacobino E et al. All-optical polariton
transistor. Nat Commun 2013; 4: 1778.

44 Sun C, Wade MT, Lee Y, Orcutt JS, Alloatti L et al. Single-chip microprocessor that
communicates directly using light. Nature 2015; 528: 534–538.

45 Colas D, Dominici L, Donati S, Pervishko AA, Liew TC et al. Polarization shaping of
Poincaré beams by polariton oscillations. Light Sci Appl 2015; 4:
e350, doi:10.1038/lsa.2015.123.

46 Dominici L, Colas D, Donati S, Cuartas JPR, De Giorgi M et al. Ultrafast control and
Rabi oscillations of polaritons. Phys Rev Lett 2014; 113: 226401.

47 Voronych O, Buraczewski A, Matuszewski M, Stobińska M. Numerical modeling of
exciton-polariton Bose-Einstein condensate in a microcavity. Comput Phys Commun
2017; 215: 246–258.

48 Bonaretti F, Faccio D, Clerici M, Biegert J, Di Trapani P. Spatiotemporal amplitude and
phase retrieval of Bessel-X pulses using a Hartmann-Shack Sensor. Opt Express 2009;
17: 9804–9809.

49 Mugnai D, Ranfagni A, Ruggeri R. Observation of superluminal behaviors in wave
propagation. Phys Rev Lett 2000; 84: 4830–4833.

50 Bowlan P, Valtna-Lukner H, Lôhmus M, Piksarv P, Saari P et al. Measuring the
spatiotemporal field of ultrashort Bessel-X pulses. Opt Lett 2009; 34: 2276–2278.

51 Valtna-Lukner H, Bowlan P, Lôhmus M, Piksarv P, Trebino R et al. Direct spatiotem-
poral measurements of accelerating ultrashort Bessel-type light bullets. Opt Express
2009; 17: 14948–14955.

52 Dominici L, Dagvadorj G, Fellows JM, Ballarini D, De Giorgi M et al. Vortex and
half-vortex dynamics in a nonlinear spinor quantum fluid. Sci Adv 2015; 1:
e1500807.

53 Rodrigues AS, Kevrekidis PG, Carretero-González R, Cuevas-Maraver J, Frantzeskakis DJ
et al. From nodeless clouds and vortices to gray ring solitons and symmetry-broken
states in two-dimensional polariton condensates. J Phys Condens Matter 2014; 26:
155801.

54 Lerario G, Ballarini D, Fieramosca A, Cannavale A, Genco A et al. High-speed flow of
interacting organic polaritons. Light Sci Appl 2017; 6: e16212,
doi:10.1038/lsa.2016.212.

55 Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U et al. Direct comparison of the
performance of Bloch surface wave and surface plasmon polariton sensors. Sens
Actuators B Chem 2012; 174: 292–298.

56 Yu LB, Barakat E, Sfez T, Hvozdara L, Di Francesco J et al. Manipulating Bloch surface
waves in 2D: a platform concept-based flat lens. Light Sci Appl 2014; 3:
e124, doi:10.1038/lsa.2014.5.

57 Wang RX, Wang Y, Zhang DG, Si GY, Zhu LF et al. Diffraction-free Bloch surface waves.
ACS Nano 2017; 11: 5383–5390.

58 Lin J, Dellinger J, Genevet P, Cluzel B, de Fornel F et al. Cosine-gauss plasmon
beam: a localized long-range nondiffracting surface wave. Phys Rev Lett 2012; 109:
093904.

59 Kishida H, Matsuzaki H, Okamoto H, Manabe T, Yamashita M et al. Gigantic optical
nonlinearity in one-dimensional Mott-Hubbard insulators. Nature 2000; 405:
929–932.

60 Deng L, Hagley EW, Wen J, Trippenbach M, Band Y et al. Four-wave mixing with
matter waves. Nature 1999; 398: 218–220.

61 Gottesman D. The Heisenberg representation of quantum computers. Preprint at: arXiv:
quant-ph/9807006, 1998.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International License. The images or

other third party material in this article are included in the article’s Creative Commons
license, unless indicated otherwise in the credit line; if the material is not included under
the Creative Commons license, users will need to obtain permission from the license
holder to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

r The Author(s) 2018

Supplementary Information for this article can be found on the Light: Science & Applications’ website (http://www.nature.com/lsa).

Generation of 2D exciton-polariton X-waves
A Gianfrate et al

9

Light: Science & Applicationsdoi:10.1038/lsa.2017.119




