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Turning losses into gain in nonlinear optics
Franco Prati 1

Modulational instabilities in nonlinear optics are the
fundamental processes that cause the transition from uni-
form states to structures in extended systems. Quite
counterintuitively, such processes can be enhanced rather
than inhibited when spectrally asymmetric losses are
introduced into the system.
In his fragment 76, the philosopher Heraclitus wrote

“The death of earth is to become water, and the death of
water is to become air, and the death of air is to become
fire, and reversely”1. This sentence describes well the
“identity of the opposites”, one of the most fruitful prin-
ciples of dialectic thinking from ancient Greece to Hegel
and beyond. These thoughts came to my mind when I
read a recent paper by Perego and coworkers2, in which
they show how in nonlinear optical systems, spectrally
asymmetric losses can generate gain in the very same
beam that is affected by losses. The death of losses is to
become gain.
Perego et al. name this phenomenon “gain through

losses” (GTL). It affects several types of modulational
instabilities3, making them possible even in regimes in
which the system would be stable in absence of asym-
metric losses. Modulational instabilities in physics, and
specifically in nonlinear optics, are known to give birth
to the most diverse spatio-temporal dynamics, ranging
from regular trains of pulses to turbulence. The most
relevant instabilities are associated with the names of
Benjamin and Feir, Faraday, and Turing and paradigmatic
amplitude equations such as the nonlinear Schroedinger,
the complex Ginzburg-Landau and the reaction-diffusion
equations, which are reviewed in a comprehensive man-
ner by Perego et al. in the first part of the paper.
When an optical system is modulationally unstable, it

experiences growth of modes (sidemodes) whose fre-
quencies are symmetric with respect to that of the driving
field, which feeds the system with energy. Then, the

energy possibly propagates to other adjacent modes
through four-wave mixing processes, giving rise to com-
plex nonlinear structures. In this scheme, it is obvious that
the introduction of (symmetric) linear losses into
the unstable sidemodes has the effect of reducing their
linear growth rate, if not totally inhibiting the instability.
What Perego et al. show is that under certain condi-

tions, the introduction of asymmetric losses into two
sidemodes can favor the growth of such modes by sub-
tracting energy from the driving field (Fig. 1). This quite
counterintuitive idea (the power of dialectic thinking) is
validated by three specific examples.
GTL-based fiber amplifier: it has been known since

the 1960s that optical fibers support bright solitons as a
balance of anomalous group velocity dispersion (GVD)
and self-phase modulation due to the Kerr effect4. Perego
et al. consider instead the regime of normal GVD and
the effects of a generic two-level atoms absorber acting as
a spectrally asymmetric filter satisfying the Kramers-
Kronig relations. The system is described by a generalized
nonlinear Schroedinger equation, and a simple stability
analysis reveals that the sidemodes resonant with the
central frequencies of the absorber are amplified through
a process that is more efficient when the sidemodes are
closer to the driving field.
Pulses and frequency combs in a ring resonator: a similar

system, which has been attracting a large amount of
attention in recent years because of its connection with
frequency combs, is the driven ring fiber resonator
described by the Lugiato-Lefever equation (LLE)5. In the
anomalous dispersion regime, the LLE presents a Turing
instability, which gives rise to trains of pulses or isolated
structures, called cavity solitons, which are the counter-
part of frequency combs in the time domain. Again,
Perego et al. show that if a lumped asymmetric spectral
filter is inserted into the cavity, trains of pulses can be
generated even in the normal dispersion regime, in which
the standard LLE predicts only the existence of dark
solitons.
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GTL in optical parametric oscillators: in an optical
parametric oscillator, amplification of the sidemodes is
realized parametrically, i.e., without transferring atoms
from a lower to a higher energy level. The maximum
efficiency is achieved for perfect phase matching, a con-
dition that is difficult to realize experimentally, and even a
small deviation from that condition may cancel the
amplification. Perego et al. show that GTL allows enlar-
ging the interval of acceptable phase mismatch, making
possible parametric amplification even in cases in which
phase matching can be barely achieved.
In the above examples, losses are stationary, but

novel modulational instabilities may arise when losses
are modulated periodically in time, thus establishing a
connection between GTL and the Faraday instability.
Since GTL has been demonstrated in systems that are

described by universal equations such as the nonlinear

Schroedinger equation and the complex Ginzburg-Landau
equation, it would not be surprising if it finds applications
in other fields of physics beyond nonlinear optics.
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Fig. 1 Schematic view of the “gain through losses” principle. A nonlinear system is driven by a coherent pump field at the reference frequency
Ωp= 0 and suffers from frequency-dependent losses. In a, the losses are centered at the symmetric frequencies −Ωa and Ωa, and if sufficiently large,
they inhibit the growth of the sidemodes at those frequencies even if the system is modulationally unstable. In b, the losses are centered around
the frequency of one of the two sidemodes, and this causes the growth of both sidemodes even if the system is modulationally stable in the absence
of losses
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