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Abstract
Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1.
Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned
mirror2–4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric
nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of
two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is
spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color
SMLM in cells.

Concepts for mirror-enhanced fluorescence have been
around for centuries. In the 1970s, fluorophore-metal
interactions were studied in depth5, followed by the
development of a quantitative theory based on semi-
classical quantum mechanics6. For an emitter located in
the vicinity of a metal-dielectric substrate, the metal
surface acts as a mirror, which leads to an enhancement
and modulation of the excitation field2, the fluorescence
decay rates and the quantum yield3,6 that arise from
interference effects, and an enhanced detectability due to
virtual 4Pi fluorescence detection4. Mirror-enhanced
concepts have been shown to be compatible with super-
resolution modalities7; however, their combined strengths
have not yet been employed to their full potential.
SMLM methods excel in visualization of the cellular

architecture at a molecular level1. The common concept
of all SMLMmethods is the separation of the fluorescence
emission of individual fluorophores in time by photo-
activation and photoconversion8, photoswitching9,10, or

transient binding11, with subsequent determination of the
single fluorophores’ position and image reconstruction.
Thus, SMLM is able to push the resolution to ~20 nm in
the lateral direction without further tweaks and tricks.
The crucial parameter that determines the final resolution
is the localization precision, which mainly depends on the
number of fluorescence photons detected per localization
event12. Several attempts to improve the localization
precision have been reported, including optimized fluor-
escent dyes13, additives14, cryo-methods15, and 4Pi-
microscopy16. Unfortunately, most approaches
lack remarkable improvements or result in further lim-
itations concerning complexity or compatibility with live
cells.
As we show here, quenching and enhancement effects

in the vicinity of metal-dielectric nanocoatings can be
used to enhance contrast by suppressing background
noise and improving the photon yield of the fluorophores.
Easy-to-fabricate biocompatible metal-dielectric nano-
coatings on glass coverslips can substantially improve the
localization precision of direct stochastic optical recon-
struction microscopy (dSTORM) by a factor of two using
a standard epifluorescence setup, which still exceeds the
performance of dSTORM using total internal reflection
microscopy (TIRFM).
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First, mirror-enhanced dSTORM is demonstrated for
the nuclear pore complex (NPC), which plays a key role in
the regulation of molecular traffic between the cytoplasm
and the nucleus17. Various superresolution microscopy
studies have demonstrated their capability to resolve the
eightfold symmetry of the NPC18,19. To identify the ideal

layer design for mirror-enhanced dSTORM of NPCs and
to match the enhancement range to the fluorophore’s
height range above the coverslip, we performed finite
element method simulations of the distance-dependent
excitation and emission enhancement for the fluorophore
of choice (Fig. 1a), Alexa Fluor 647 (A647). Labeling the
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Fig. 1 Resolving the NPC. a Optimized metal-dielectric substrate designed to exhibit the strongest enhancement field for emission (solid line) and
excitation (dashed line) of the red emitting dye A647 at the axial position of the NPC ring structure labeling the pore anchoring protein gp210.
b Simulated conventional (localization precision: 20 nm, left) and mirror-enhanced dSTORM (12 nm, right) images; respective experimental image of a
single NPC ring and overview images. c Fourier ring correlation (FRC) resolution estimation of sunny-side-down (gray solid line, see Supplementary
Fig. S1), TIRF- (gray dashed line) and mirror-enhanced dSTORM (blue line) images of b. d–h Statistical analysis. d Principle of TRABI22. Histograms of
e intensity distribution, f standard deviation, g background variance, and h resulting localization uncertainty of the localization events for coated
coverslips (blue) with half (filled bars) and the same (open bars) excitation power as in the experiments on uncoated coverslips (gray) in the sunny-
side-down (filled bars) and TIRF configurations. The inset in h highlights the increased number of events with a localization uncertainty below 10 nm
for coated (blue) versus uncoated coverslips in the sunny-side-down (gray filled bars) and TIRF (gray open bars) configurations. Scale bars: 50 nm
(single rings) and 1 µm (overview)
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pore anchoring protein gp210 by classical immunolabel-
ing, the fluorophores are expected at a distance of ~50 nm
above the coverslip. To selectively enhance the emission
in this height region, the optimal coating design features a
2 nm germanium (Ge) layer, followed by a 50 nm
silver (Ag) layer covered by 10 nm of silicon nitride
(Si3N4) (Fig. 1a). The maximum axial extension of
the enhancement window (~120 nm) is wavelengths-
dependent20, comparable to those reached by other eva-
nescent techniques such as TIRFM, and thus powerful
for selective imaging of membrane proteins in adherent
cells.
Assuming that the eight gp210 proteins per NPC would

be labeled with a single A647 and a localization precision
of σ ≈ 20 nm, the eight elements of the NPC ring would
appear as spatially overlapping signals in a simulated
dSTORM image (Fig. 1b). With a predicted two-fold
fluorescence enhancement by metal-dielectric coatings
(Fig. 1a), the resolution could be substantially improved
(Fig. 1b). To test this enhancement experimentally, we
performed mirror-enhanced dSTORM experiments with
nuclear envelopes spread on the metal-dielectric substrate
and on a bare glass coverslip as a control sample. For the
mirror-enhanced dSTORM experiments, the nanocoating
with the specimen faces the front lens of the water
objective (NA 1.15) in a “sunny-side-down” (SSD) con-
figuration. Control experiments on uncoated glass were
performed in both the SSD (NA 1.15) and TIRF (oil
objective, NA 1.46, see Supplementary Fig. S1) config-
urations. The acquisition conditions were the same for all
experiments mentioned above except for the applied laser
intensity. The excitation enhancement in mirror-
enhanced dSTORM by the mirror effect of the metal
coating and the increased excitation intensity of the eva-
nescent field in TIRF illumination allowed a 50% reduc-
tion of the laser intensity for both configurations, which
still matches the photoswitching conditions of A647. The
SSD dSTORM image appears blurrier than the corre-
sponding mirror-enhanced dSTORM image, where the
eight gp210 elements can be distinguished (Fig. 1b). An
overall resolution enhancement of 150% was derived from
Fourier ring correlation (FRC) analysis21 (Fig. 1c) based
on the overview images (Fig. 1b). Importantly, the reso-
lution of the mirror-enhanced dSTORM image also
exceeds that which can be achieved with TIRF dSTORM
by 25%.
To understand in more detail why mirror-enhanced

dSTORM provides sharper images, we analyzed the
localization data by temporal, radial-aperture-based
intensity estimation (TRABI)22. This photometric
method determines the signal and noise levels indepen-
dently of the data fitting model (Fig. 1d). Here, TRABI
reveals that the intensity of a single localization event is
increased two- to three-fold compared to that in the TIRF

and SSD configurations (Fig. 1e). For all three config-
urations, the signal width is comparable (Fig. 1f), and the
noise represented by the background variance is sig-
nificantly reduced in the case of mirror-enhanced
dSTORM (Fig. 1g). Note that, in a typical dSTORM
experiment, the fluorophore is already excited at or close
to the saturation level to ensure maximal photon emission
during each on-event (Supplementary Fig. S2). Thus, a
further increase in excitation intensity cannot result in
brighter emission, but it can result in optical sectioning
due to the height-dependent modulation of the
enhancement field. Importantly, this optical sectioning
excludes the first nanometers adjacent to the surface
coating (Fig. 1a, peak at 60 nm) so that background noise
is substantially reduced. This effective background sup-
pression is induced by both the sectioning itself and the
lower laser intensity, while the latter is fully sufficient to
reach the optimal excitation rate.
Detailed analysis of each localization event revealed

nearly identical reoccurrence numbers for dSTORM
versus mirror-enhanced dSTORM, while the on-time
duration and photon counts were increased for the latter
(Supplementary Fig. S3). Consequently, the resolution
benefit of mirror-enhanced dSTORM originates from
both the increased signal of each localization event and
the increased on-time of the fluorophore in the on-state.
Taken together, “more photons” and “less noise” even-
tually improve the localization uncertainty12 and thus the
localization precision to <10 nm (Fig. 1h, inset graph).
This effect was reproduced in independent experiments
(Supplementary Fig. S1b–d). As the sample fabrication is
very controllable and reproducible, the variation has to be
attributed to the variation in the preparation of the
nuclear membrane. Note that the enhancement can also
be achieved for structures closer to the surface when the
metal-dielectric layer thicknesses are adjusted accord-
ingly. Imaging isolated microtubules represents a typical
example that requires such low-distance surface imaging
(Supplementary Fig. S4).
The option to selectively boost fluorescence at different

heights makes mirror-enhanced dSTORM highly suitable
for tailored and improved investigations of membrane
receptors or other cell membrane components. To
experimentally show cell compatibility as well as spectral
tunability of mirror-enhanced dSTORM, we performed
dual-color experiments on Jurkat T-cells to visualize the
distribution of CD45 receptors. Cells were labeled with a
50:50 mixture of Alexa Fluor 532 (A532) and A647 anti-
CD45 antibodies and imaged on metal-dielectric coated
and non/coated glass coverslips (Fig. 2). Note that each
CD45 (monomeric) receptor-linked protein tyrosine
phosphatase molecule23 is labeled by only a single primary
antibody carrying either A647 or A532 so that they cannot
colocalize (Supplementary Fig. S5).
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Simulations on fluorescence enhancement for the two
fluorophores of choice suggest that, while the excitation
enhancement field is slightly shifted in height for the two
fluorophores (Fig. 3a, b), the increase in detectability is
comparable for both with a dominant contribution from
the parallel dipole contributions (Fig. 3c, d). The resulting
emission enhancement profile shows a slight shift in
amplitude along the height axis as the quantum yield
enhancement differs greatly due to the difference in
intrinsic quantum yield of A532 (η0= 0.61) and A647 (η0
= 0.33) (Fig. 3e, f).
Nevertheless, both fluorophores can share an operating

window. Thus, the simultaneous enhancement of spec-
trally distinct fluorophores with the same metal-dielectric
coating design is feasible (Fig. 2b). Dual-color imaging
confirms the spectral tunability and spatial selectivity of

mirror-enhanced dSTORM: false-color images indicate
the localization uncertainty of events detected for each
color on coated and uncoated glass coverslips for com-
parison with white spots, indicating higher localization
precision (Fig. 2c, d). On coated coverslips, high-precision
events are increased for both colors, resulting in improved
image resolution. The histograms show the corresponding
distributions of localization uncertainty, intensity and
background variance for A647 and A532 (Fig. 2, left and
right) on coated and uncoated coverslips. The graph
insets (Fig. 2) depict events with localization uncertainties
below 10 and 20 nm. For both colors, the occurrence of
these localizations is increased by a factor of 1.5 due to
higher brightness and background suppression.
Up to this point, all sample structures exhibited a planar

architecture placing the features of interest directly in the
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enhancement region. In contrast, a three-dimensional
(3D) sample will partly exceed the enhancement region so
that features located in and outside the enhancement
maximum can be distinguished within a very sharp height
region. To deduce absolute height information based on
the mirror-enhancement effect, we used 15 µm micro-
spheres labeled with A647 as described by Cabriel et al.24.
Based on the bead radius and center position, the axial
position of each localization can be calculated (Fig. 4a).
On the nanocoating (2 nm Ge, 50 nm Ag, and 10 nm
Si3N4), the intensity and localization uncertainty show a
clear height dependence with a broad maximum of the
intensity at a height of 100 nm that translates to a mini-
mum of localization uncertainty (Fig. 4b). The experi-
mental axial intensity profile agrees well with the expected
excitation and emission enhancement based on simula-
tions (Fig. 4c). Notably, the simulated emission
enhancement for higher distances of ~350 nm is fully
compensated by a minimum of the excitation profile
preventing an effective enhancement in this height region.
This height-dependent profile can be translated into

axial distances. Here, we demonstrate this for a 3D
microtubule network of Cos7 cells where the average

localization uncertainty serves as the axial ruler to pin-
point the height of single filaments (Fig. 5). For a con-
ventional dSTORM experiment, the localization
uncertainty is consistent within a wide axial range
(Fig. 5a), while there is a strong height dependence for
mirror-enhanced dSTORM. Filaments close to the sur-
face, below ~130 nm, display the lowest localization
uncertainty (Fig. 5b, green filaments) with a gradual
increase in the localization uncertainty for filaments fur-
ther above. This provides uncertainty-based image con-
trast that allows clear height distinction of crossing
microtubules (Fig. 5b, c, crossing points marked by white
arrows).
To summarize, metal-dielectric coatings are a versatile

biophotonics tool that enable straightforward control of
the axial fluorescence enhancement distribution by
adjusting the distance of the fluorescent sample to the
nanocoating or vice versa. The simple three-ply design of
our coatings grants a straightforward one-step fabrication
and allows tailoring the shape of the resulting enhance-
ment field to the sample geometry and fluorescent label at
hand. Coated coverslips can, in principle, be fabricated in
tabletop thin-film deposition systems and be used in any

(see figure on previous page)
Fig. 3 Simulation of the excitation and emission enhancement based on finite element method calculations. a Scheme of the sample
geometry. b Excitation intensity enhancement in the vicinity of a silver nanocoating (dm= 50 nm, dd = 10 nm) for two different excitation
wavelengths (λex). c, d Far-field radiation patterns for parallel (II) and perpendicular (⊥.) dipole orientations in the vicinity of a glass coverslip (gray)
and the silver nanocoating (blue) at a height of 10 nm (solid), 50 nm (doted), 100 nm (dashed), and 150 nm (dash-doted) for A532 (c) and A647 (d). e,
f The combination of quantum yield enhancement (dotted) and detectability enhancement (dashed) leads to a tailored height-dependent emission
enhancement profile (solid) for A532 (e) and A647 (f)
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SMLM setup without further training or caution and
without the requirement of implementing TIRF illumi-
nation and a high NA objective. Furthermore, in contrast
to TIRF approaches, mirror-enhanced SMLM allows
highly controlled sectioning. For TIRF-based illumination,
the penetration depth dramatically depends on the illu-
mination angle, which is difficult to control in most
common setups.
As experimentally demonstrated, the scope of applica-

tions for mirror-enhanced SMLM is comparable to tradi-
tional SMLM techniques enabling dual-color imaging of
cells. Of course, the enhancement field of mirror-enhanced
SMLM is bound to the surface and currently extends to
160 nm above the substrate interface. Moreover, single-
molecule localization is still feasible without the boosting
effect, as demonstrated here by interrogating the 3D
microtubule architecture, and thus promotes mirror-
enhanced SMLM as a 3D imaging tool. This is important
as axial resolution is a bottleneck in SMLM, which often
limits 3D nanoscopy. Distance-dependent shifts in the
fluorescence spectrum20 and lifetime25,26 can serve as cru-
cial readouts providing an axial ruler with nanometer pre-
cision. However, these methods are based on a confocal
approach with all its limitations. Here, mirror-enhanced
dSTORM can provide an essential tweak to improve the
spatial resolution of 3D-SMLM. Mirror-enhanced

dSTORM holds another unique asset with respect to 3D-
SMLM: it not only boosts resolution but also reduces the
required laser power to 50% while preserving the desirable
blinking behavior. Importantly, for our two-dimensional
nanocoating, there are no localization artifacts that arise
from emitter-nanostructure coupling. This is in contrast to
the well-known situation for zero-dimensional and one-
dimensional nanostructures27–29, where the emitter-
nanostructure “asymmetry” induces signal distortions due
to coupling between the emitter’s electromagnetic field and
the nanostructure.
Beyond SMLM, the method can be used to enhance the

performance of various established fluorescence techni-
ques30. With respect to high-content imaging and lab-on-
the-chip approaches, mirror-enhanced SMLM outper-
forms TIRF-based illumination schemes, where realizing
homogeneous illumination over a large field of view is still
challenging31,32.
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