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Abstract
The quantum uncertainty of laser light limits the sensitivity of gravitational-wave observatories. Over the past 30 years,
techniques for squeezing the quantum uncertainty, as well as for enhancing gravitational-wave signals with optical
resonators have been invented. Resonators, however, have finite linewidths, and the high signal frequencies that are
produced during the highly scientifically interesting ring-down of astrophysical compact-binary mergers still cannot
be resolved. Here, we propose a purely optical approach for expanding the detection bandwidth. It uses quantum
uncertainty squeezing inside one of the optical resonators, compensating for the finite resonators’ linewidths while
keeping the low-frequency sensitivity unchanged. This quantum expander is intended to enhance the sensitivity of
future gravitational-wave detectors, and we suggest the use of this new tool in other cavity-enhanced metrological
experiments.

Introduction
The dawn of gravitational-wave (GW) astronomy began

with the historic detection of binary black hole coales-
cence in 20151 and several more detection events that
followed in subsequent years2. The latest observation of
gravitational waves was from a binary neutron star
inspiral. It was succeeded by observations of a broad
spectrum of electromagnetic counterparts3,4, demon-
strating that gravitational-wave astronomy is invaluable
for understanding the Universe5,6. Further increasing the
sensitivity of gravitational-wave observatories (GWOs) is
of utmost importance to maximize the scientific output of
combined multi-messenger astronomical observations.
Gravitational-wave observatories, such as Advanced

LIGO7, Advanced Virgo8, GEO6009, and KAGRA10, are
based on the Michelson interferometer topology (see
Fig. 1), where the incoming gravitational wave changes the
relative optical path length of two interferometer arms.
The ability of the observatories to measure gravitational

waves is limited by various disturbances that also change
the differential path length or manifest themselves as
such. The main noise source at signal frequencies above
~50 Hz in the current generation of GWOs is the quan-
tum uncertainty of the light field, which results in shot
noise (photon counting noise)7,11. Noise at lower fre-
quencies has contributions of several origins, such as
Brownian motion of the mirror surfaces and suspensions
or quantum radiation pressure noise, which comes from
mirrors’ random motion due to quantum fluctuations of
light power12,13. All these noise sources contribute to the
photocurrent of the photodiode placed on the signal port
of the detector. The observatory’s sensitivity to the GW
signal, i.e., its ability to discriminate between the GW
signal and noise is given by the observatory’s signal-to-
noise ratio (SNR). For a given set of parameters of the
detector, e.g., the interferometer’s arm length or laser
power, its sensitivity is ultimately limited by its “quantum
Cramer-Rao bound” (QCRB)14. For continuous signals,
the QCRB at every frequency is determined by the
radiation pressure force exerted on the test mass by
quantum fluctuations of the light field in a pure state15.
The higher is this quantum radiation-pressure force on
the mirror, the higher is the uncertainty in its momentum,
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and thus the better can the position be resolved, accord-
ing to the Heisenberg uncertainty relation16. The QCRB
represents an ultimate limit on the sensitivity of the
detector, which can only be saturated in the absence of
decoherence and under the optimal measurement proto-
col. For example, reaching this limit at low frequencies in
GWDs requires implementing the back-action evasion
measurement scheme, e.g., a variational readout17, such
that the sensitivity is fully limited by shot noise.
Generally, the QCRB is decreased when the squeezed

states of light are added to the interferometer configura-
tion (such that the quantum uncertainty in the amplitude
of the light field is increased)12,18,19. The injection of
squeezed states has become a well-established technique
for GWOs20–22.
A classical way to lower the QCRB is to increase the

signal response of the detector by optical resonators, as
implemented already in the first generation of GWOs23.
The resonance buildup of optical energy in resonators
increases the radiation pressure force16 and hence
lowers the QCRB. The current (second) generation
design includes Fabry-Perot cavities in the arms and a
signal-extraction (SE) cavity on the dark port of the
detector24. Resonators, however, significantly lower the
QCRB only at frequencies below the resonator’s line-
width, i.e., they reduce the observatory’s detection
bandwidth25. The injection of squeezed states,

mentioned above, is not able to counteract the loss of
bandwidth due to resonators.
The issue of detector bandwidth has become crucial in

the era of multi-messenger astronomy3. Information
about the physics of extremal nuclear matter is hidden in
the waveforms of gravitational waves radiated from the
post-merger remnants of binary neutron star systems26.
Obtaining this information is important for unraveling the
physics of compact astrophysical objects—the engines
that drive gamma-ray bursts, the origin of heavy elements
and possible modifications to general relativity27,28. These
waveforms have typical frequencies above 1 kHz, where
the sensitivity of current observatories degrades due to
limited bandwidth.
Over the past 20 years, the challenge of increasing the

bandwidth without changing the peak sensitivity at low
frequencies has become one of the cornerstones for the
design of future GWOs29,30. Previous concepts involved
unstable optomechanical or atomic systems operating in
the so-called “negative dispersion” regime31–35.
In this work, we propose a new and all-optical concept

without instabilities that targets the same goal, i.e., arbitrary
expansion of the detection bandwidth, given a sufficiently
low quantum decoherence. This quantum-expanded signal
extraction concept is based on the optical parametric
amplification process inside the interferometer, which allows
an increase in the quantum fluctuations in the amplitude of
the light by introducing quantum correlations, thereby
providing a new knob to turn for reducing the QCRB. Due
to the optical coupling between the cavities, the quantum
uncertainty at high frequencies gets squeezed such that it
compensates for the reduction in signal enhancement due to
the cavity linewidth. At low frequencies, neither the signal
nor the quantum noise changes, which maintains the
existing sensitivity in an optimized state for observing the
pre-merger stages of binary coalescence. Our approach is
fully compatible with other enhancements to the detector
design, such as injection of frequency-dependent squeezed
light and variational readout17,36–38.
Placing an optical parametric amplifier inside the detec-

tor has been considered for other purposes before, i.e., for
increasing the low-frequency39 or mid-frequency40–42

sensitivity, yet all-optical quantum expansion of bandwidth
has never been proposed so far.

Results
Hamiltonian of the quantum expander
In the future, GW interferometers will operate with the

signal port at the dark fringe. In this operating condition,
all of the light power pumped into the interferometer is
reflected towards the laser source. The only light that
leaves the interferometer through the dark signal port
corresponds to the signal caused by the dynamic change
in the differential arm length, e.g., due to a GW. The zero-
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Fig. 1 Conceptual representation of the GW observatory with our
quantum expander. The relative change in the distance between the
central beam splitter and the test masses due to a gravitational wave
is measured on the signal port with photodiode PD. Optical cavities in
the arms are used to enhance the light power and the signal.
Additional mirrors independently enhance the signal (signal extraction
mirror, SE mirror) and power (power recycling mirror, PRM). We add a
nonlinear χ(2) crystal into the SE cavity, formed by the SE mirror and
input mirrors, which creates an internally squeezed light field to
enhance the high-frequency sensitivity and expand the detection
bandwidth.
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point fluctuation that enters the dark signal port defines
the shot noise of the interferometer.
With respect to the quantum noise and the signal, the

interferometer topology can be conceptually represented by
a simpler system of two coupled cavities:43 the arm cavity
with optical mode ba, and the signal-extraction cavity, which
is formed by the front mirror of the arm cavity and the
signal-extraction mirror, with optical mode baq ; see Fig. 2a.
The two modes are coupled through the partially reflective
front mirror of the arm cavity, with a coupling frequency
ωs, which depends on the front mirror’s reflectivity. For
illustrative purposes, we limit the discussion to the inter-
action of these two modes, while the complete description
should include the modes of the next longitudinal reso-
nances of the arm cavity, separated by one free spectral
range. In this approximation, the system can be described
by the standard Hamiltonian for coupled harmonic oscil-
lators: bH=�h ¼ ω0baybaþ ω0bayqbaq þ ωsðbayqbaþ baybaqÞ. If the
system is continuously excited at one of the normal fre-
quencies, ω0 ±ωs, the excitation energy is equally split
between the two modes ba and baq. However, when one of
the modes (e.g., baq) is continuously excited at ω0, the

complete energy is redistributed into the other mode (e.g.,
ba). In this way, when mode baq is open to the environment
and driven by the incoming zero-point fluctuation, its noise
components are strongly suppressed at sideband fre-
quencies ω0 ±Ω, Ω≪ωs, and all the energy at these fre-
quencies goes into the arm cavity mode ba. For large values
of Ω, the noise becomes resonant inside the SE cavity as
well, reaching its resonance maximum at ωs, as shown in
Fig. 2b. It is this particular resonant structure of the cou-
pled system that we take advantage of to enhance the
sensitivity of the detector at high frequencies as follows.
We propose to place an optical parametric amplifier,

e.g., a χ(2) nonlinear crystal, inside the SE cavity. The
parametric process amplifies the fluctuations in one
quadrature of the mode baq and suppress the fluctuations
in its conjugate counterpart. Depending on the sideband
frequency Ω, the amplification strength varies due to the
presence of the coupled cavity structure. At frequencies
around ω0, the excitation of mode baq is suppressed, so the
parametric process is inefficient, and almost no squeezing
is produced. At the same time, the SE cavity is resonant
for higher frequencies Ω ~ ωs, so the crystal produces a
high squeeze factor. The suppression of shot noise at
frequencies 0≪Ω≪ ωs happens exactly at the same rate
as the reduction in the signal amplification due to the
detector bandwidth (see Fig. 2c). The two processes
compensate each other, and the SNR remains constant;
thus, the bandwidth is expanded (see Fig. 2d).
The quantum expansion effect can be demonstrated in

more detail by formulating a complete Hamiltonian of the
model two-mode system (for a general analysis of the
system, see the Supplementary Material):

bH ¼ bH0 þ bHint þ bHγ þ bHx � FGWx ð1Þ
bH0 ¼ �hω0ba

y
baþ �hω0ba

y
qbaq ð2Þ

bHint ¼ �hωsba
y
qbaþ

1
2
�hκβe�2iω0t

bayqba
y
qe

iϕ þ h:c: ð3Þ

bHγ ¼ i�h
ffiffiffiffiffi

2γ
p

Z

1

�1
bayqðωÞbainðωÞ � bayinðωÞbaqðωÞ

� �

dω

ð4Þ
bHx ¼ �bFrpbx ¼ ��hG0ba

y
babx ð5Þ

where ba;baq are the arm cavity and SE cavity modes,
respectively, and ω0 is their natural resonance frequency;

ωs ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TITM=ð4LSELarmÞ
p

is the coupling rate between
two cavities, TITM is the transmission of the front mirror
of the arm cavity; LSE, Larm are the lengths of the SE and
arm cavity, respectively; γ= cTSE/(4LSE) is the coupling
rate of the SE mode to the continuum of input modes bain;
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Fig. 2 Concept of the quantum expander. a Model system of two
coupled cavities, arm and signal extraction, with a nonlinear crystal
inside the SE cavity; b resonance enhancement of the SE mode (solid
red) at frequencies close to ωs and suppression at low frequencies,
with two longitudinal resonances of the arm cavity (dashed black)
separated by a free spectral range (ωFSR); c suppression of the shot
noise at high frequency by the quantum expander (red) compared to
the vacuum level (black), in comparison to the scaling of the signal
transfer function (TF) due to the cavity linewidth with the quantum
expander (green) and without it (black), where the signal is
suppressed by 6 dB due to the parametric process; d noise-to-signal
ratio for the detector with the quantum expander (red) and without it
(black). In c, the quantum expander noise squeezing has exactly the
same scaling as signal reduction due to the cavity bandwidth, so the
bandwidth of the noise-to-signal ratio is expanded, as seen in d.
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x is the displacement of the test mass partially in reaction
to the GW tidal force FGW; the mirror motion x is coupled

via the radiation-pressure force bFrp to the cavity mode
with strength G0= ω0/Larm; and κ is the coupling strength
due to crystal nonlinearity under a second harmonic
pump field with amplitude β and phase ϕ. The pump field
is assumed to be classical, and its depletion is neglected.
Quantum expansion affects only the high-frequency
sensitivity, which is dominated by shot noise. This justifies
us to ignore in this simple model the effects of the
quantum radiation pressure on the dynamics of the test
mass, effectively assuming an infinite mass of the mirrors.
The displacement of the mirrors x in this approximation
is caused only by the GW strain h0= x/Larm. In addition,
note that the expression for the coupling frequency ωs

only applies when ωs≪ ωFSR≡ c/(2Larm) and has to be
modified when the neighboring longitudinal resonances
of the arm cavity are taken into account.

Input-output relation
The light field in the coupled system can be expressed in

terms of the input fields by solving the Hamiltonian
above. We write the input-output relations for the
amplitude and phase quadrature of the light (denoted by
the upper indices (1, 2) correspondingly), representing the
field leaving the detector bað1Þout, the field inside the SE cavity
bað2Þq , and the field inside the arm cavity bað1Þ in terms of the
input noise fields bað1;2Þin :

ba 1ð Þ
out Ωð Þ ¼ ba 1ð Þ

in Ωð Þ γ � χð ÞΩþ i Ω2 � ω2
s

� �

γ þ χð ÞΩ� i Ω2 � ω2
s

� �

þ h0 Ωð Þ 2iG
ffiffiffi

γ
p

ωs

γ þ χð ÞΩ� i Ω2 � ω2
s

� �

ð6Þ

ba 2ð Þ
q Ωð Þ ¼ ba 2ð Þ

in Ωð Þ
ffiffiffiffiffi

2γ
p

Ω

γ þ χð ÞΩ� i Ω2 � ω2
s

� �

þ h0 Ωð Þ iGωs

γ þ χð ÞΩ� i Ω2 � ω2
s

� �

ð7Þ

ba 1ð Þ Ωð Þ ¼ ba 2ð Þ
in Ωð Þ i

ffiffiffiffiffi

2γ
p

ωs

γ � χð ÞΩ� i Ω2 � ω2
s

� � ð8Þ
where we linearized the system dynamics and introduced
an effective parametric gain χ= κβ , effective signal
coupling strength G ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2PcLarmω0=ð�hcÞ
p

and optical
power inside the arm cavity Pc ¼ �hω0a2, with a being an
average amplitude of the mode ba. The phase of the pump
field was chosen such that the parametric process
squeezes the signal quadrature inside the SE cavity, i.e.,
ϕ= π/2. Several features are provided by these equa-
tions. First, when we remove the crystal (i.e., χ= 0) in the
typical operational range of GWOs Ω≪ ωs, the input-
output relation Eq. (6) reduces to the standard relation

for a baseline GWO43,44, with the detection bandwidth
given by γbaseline ¼ ω2

s =γ ¼ cTITM=ðTSELarmÞ. Second, the
noise term in Eq. (7) is strongly suppressed at zero
sideband frequency, as we described above in the
example with two coupled modes: bað2Þq ð0Þ ¼ hð0ÞG=ωs;
therefore, virtually no squeezing is produced at low
frequencies. The noise in the output in Eq. (6) at low
frequencies is defined by the vacuum field reflected
directly off the SE mirror. Third, when the sideband
frequency matches the normal mode frequency, Ω= ωs,
the signal mode takes the form bað1ÞoutðωsÞ ¼ bað1Þin ðγ � χÞ=
ðγ þ χÞ þ 2ih0ðωsÞG ffiffiffi

γ
p

=ðγ þ χÞ. This equation shows
that for a parametric gain close to the threshold (χ→ γ),
the noise term becomes almost infinitely squeezed19, but
the signal becomes deamplified by at most a factor of 2.
Despite the signal deamplification, ideally, the SNR in this
case can become infinite, as we show below by computing
the sensitivity of the quantum-expanded observatory.

Sensitivity spectrum
The noise spectral density of the GWO with a quantum

expander, normalized to a GW strain amplitude h of
unity, can be obtained from Eqs. (6–8) and further
approximated in the typical regime where GWOs operate,
γ≫ ωs≫Ω, as follows:

Sh Ωð Þ ¼ �hc
8ω0LarmPc

Ω2 � ω2
s

� �2þ γ � χð Þ2Ω2

γω2
s

� �hc
8ω0LarmPc

γ2q þΩ2

γω2
s

γ � χð Þ2
ð9Þ

with the new detection bandwidth defined as
γq ¼ ω2

s =ðγ � χÞ. Without the quantum expansion, χ= 0,
the baseline sensitivity decreases with increasing frequency,
limited by the detector’s bandwidth γbaseline ¼ ω2

s =γ:

Sbaselineh Ωð Þ ¼ �hc
8ω0LarmPc

Ω2 � ω2
s

� �2þγ2Ω2

γω2
s

� �hc
8ω0LarmPc

γ2baseline þΩ2

γω2
s

γ2
ð10Þ

The detection bandwidth γq can ideally be expanded
infinitely (in the two-mode approximation) by a factor of
γ/(γ− χ)→∞ when the squeezing approaches the
threshold point χ= γ. At this point, the sensitivity is given
by

Sh Ωð Þ ¼ �hc
8ω0LarmPc

ω2
s

γ
ð11Þ

which is approximately frequency independent under
Ω≪ ωs as a result of the expanded bandwidth γq. In

Korobko et al. Light: Science & Applications           (2019) 8:118 Page 4 of 8

Light Sci Appl | 2019 | Vol 8 | Issue 6 | 1155



reality, even in the lossless case, the bandwidth is still
limited by the next longitudinal resonance of the arm
cavity and the detector’s reduced response when the
detector’s arm length is comparable to the gravitational
wavelength.
The effect of the quantum expander on a baseline GWO

is shown in Fig. 3. To produce this figure, we compute the
sensitivity based on the transfer matrix approach (as
presented in the Supplementary Material), which better
describes the high-frequency behavior in the longer
detectors, i.e., when ωs ~ ωFSR. It also takes into account
the effects of quantum radiation pressure noise, quantum
decoherence (see the Discussion section for more details),
the next free spectral ranges of the cavities and the
response function of the detector to gravitational waves.

Quantum Cramer-Rao bound
The sensitivity of any GWO is ultimately limited by its

QCRB SQCRB
h ðΩÞ15. The conditions for reaching this

bound are that (i) the quantum radiation pressure noise is

evaded, and (ii) the upper and lower optical sidebands
generated by the GW are equal in amplitude15. Naturally,
there is also a typical requirement of absence of optical
decoherence and technical noises. The quantum expander
configuration does not affect the QRPN and allows
satisfying condition (i) at low frequencies by well-known
back-action evading techniques (e.g., variational readout,
see the Discussion below). We prove that condition (ii) is
satisfied by directly computing the QCRB in the case of
GW detectors, defined as follows:15

SQCRB
h ðΩÞ ¼ �h2

2Larm2S
FFðΩÞ

¼ �hc
4ω0LarmPc

1
SaaðΩÞ

ð12Þ

where SFF(Ω) is the single-sided spectrum of the
radiation-pressure force bFrp and Saa(Ω) is the noise
spectrum of the arm cavity field, which one can compute
from Eq. (9):

Saa Ωð Þ ¼ 2γω2
s

γ � χð Þ2Ω2 þ Ω2 � ω2
s

� �2 ð13Þ

Therefore, the limit on the sensitivity is given by the
QCRB in the following form:

SQCRB
x Ωð Þ ¼ �hc

4ω0LarmPc

Ω2 � ω2
s

� �2þ γ � χð Þ2Ω2

2γω2
s

ð14Þ
which is identical to Eq. (9). The sensitivity becomes
unbounded (QCRB goes to zero) at the parametric
threshold χ= γ at frequency Ω= ωs.
This calculation demonstrates that the quantum

expander strongly reduces the QCRB at high frequencies
compared to the baseline GWO and that the expanded
detector does reach its lowered QCRB (in the case of the
typical assumption of zero photon loss).

Discussion
Quantum decoherence
Non-classical light is sensitive to decoherence, i.e., to

optical loss, which destroys the inherent quantum correla-
tions45. Losses occur inside the detector, as well as on the
readout and have multiple contributions. Any squeezed
light application and QRPN suppression technique is lim-
ited by optical loss, and the proposed scheme is not an
exception. The quantum expander relies on squeezing
operation inside the interferometer to compensate for the
decrease in the signal amplification due to the finite cavity
linewidth. The higher the squeeze factor is, the more it is
susceptible to optical loss. The effect of different readout
losses is shown in Fig. 3. In the current generation of
GWOs, the optical readout loss is on the order of 10%46,
and in next observatory generation, 3–5% might be
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achievable47. With advanced techniques, which have been
proposed48,49 but have yet to be explored experimentally,
the readout loss could conceivably be reduced to as small as
0.5%. Introducing a nonlinear crystal inside the detector will
increase the internal loss; however, there is no fundamental
reason why such a crystal should have a bulk or surface
absorption higher than that of the interferometer central
beam splitter. Fortunately, the crystal needs to be placed at
a position where the light power is comparatively low.
There are other technical issues associated with placing a
crystal inside the detector, such as the need for intense
second-harmonic pump light, the requirements on the
crystal size being larger than the beam diameter and the
potential influence of the parametric amplification process
on the interferometer’s control and stabilization systems.
These issues are crucial for the practical detector design, yet
rather technical in nature, so their detailed discussion can
be found in the Supplementary Material. We believe that
the added loss due to a crystal can be relatively small (see,
e.g., the discussion in ref. 39) and the additional technical
challenges can be overcome, and we consider our work to
be a strong motivation for detailed experimental research
and development.

Combination with external-squeezing injection
All observatories of the current generation are already

operating with external-squeezing injection. When the
quantum expander is combined with external-squeezing
injection, the overall squeeze factor at high frequencies
increases further. This makes the requirements for low
optical loss more stringent. The benefit from quantum
expansion in combination with external squeezing
depends not only on the amount of loss but also on the
places where it occurs. There exists an optimal parametric
gain in the quantum expander that maximizes the sensi-
tivity by balancing the signal deamplification in the
parametric process and squeeze factor39. Ultimately, every
specific design of the detector has to be optimized with
respect to optical parameters to be able to maximally
benefit from quantum expansion. An in-depth discussion
of the physical and technical aspects of combining the
quantum expander with external-squeezing injection can
be found in the Supplementary Material.
We envision the quantum expander to benefit future

generations of GWOs when technological progress allows
lowering of optical losses and detectors become longer
and overall more sensitive, e.g., in the extensions of the
third generation of observatories (Einstein Telescope and
Cosmic Explorer) and beyond.

Combination with other QND techniques
Quantum-expanded signal extraction will further reduce

the shot noise at high frequencies without affecting the
established improvement factor from external squeezing.

The quantum noise at low frequencies (QRPN) will remain
unchanged. This distinguishes our approach from other
designs targeting the high-frequency sensitivity44,50,51. The
QRPN can be suppressed independently using already
developed approaches using frequency-dependent squeez-
ing, variational readout or quantum non-demolition mea-
surements17,36–38. In Fig. 3, we illustrate this point by
combining the quantum expander with the variational
readout technique, which requires an additional filter cavity
(assumed lossless here) on the output of the GWO.

Potential astrophysical applications
Currently, all GWOs maximize the SNR at frequencies

around 100 Hz, where signals of compact binary inspirals
can be observed. Merger and post-merger signals from
binary neutron stars are expected to be at frequencies of
~1–3 kHz, where the sensitivity of the detectors sig-
nificantly deteriorates due to the detection bandwidth.
Quantum expansion of the detection bandwidth allows an
increase in the sensitivity exactly at these frequencies, as
shown in Fig. 3. To illustrate the potential of the quantum
expander, we compute the SNR of a particular model of
the post-merger signal52,53 (see the details in the Sup-
plementary Materials) and demonstrate the improvement
in detection rates on the histogram in Fig. 4: from a 9%
chance of a single loud event surpassing the detection
threshold after a full year of data acquisition in a baseline
GWO, to ~76% and almost 100% for quantum-expanded
detectors with 3 and 0.5% optical loss, respectively.
We envision the quantum expander as a potential tool

allowing GW observatories to contribute to a better
understanding of the physics of ultra-dense quantum
matter in neutron stars and astrophysics of compact objects
in general. We anticipate that other metrological54,55, as
well as optomechanical56,57 experiments will benefit from
our approach of using a coupled-cavity system with an
internal parametric amplifier for bandwidth expansion.

Materials and methods
The Hamiltonian of the quantum expander, presented

in the Results section, is constructed based on the input-
output relations for the noise and the signal58,59. For this
derivation, we assume the effects of radiation-pressure
noise and optical losses to be negligible, although the full
model used to plot Fig. 3 includes both of these effects
and is presented in the Supplementary Materials. The
results of the derivation of the input-output relations,
which we present in the full extent in the Supplementary
Materials, allow us to obtain the shot-noise limited output
field containing the noise an(Ω) and signal terms Xout(Ω):

aðcÞout Ωð Þ ¼ an Ωð Þ þ Xout Ωð Þ ð15Þ
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an Ωð Þ ¼ � e2iφe2iΩτSEðe2iΩτarm � RiÞ þ e2qðe2iΩτarmRi � 1Þ
e2qðe2iΩτarmRi � 1Þ þ e2iφe2iΩτSEðe2iΩτarm � RiÞRs

aðcÞin Ωð Þ

ð16Þ

Xout Ωð Þ ¼ 2ikpaeiφeiΩτSE eiΩτarmeqTiTs

e2qðe2iΩτarmRi � 1Þ þ e2iφe2iΩτSEðe2iΩτarm � RiÞRs
x Ωð Þ

ð17Þ
where Ri;s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RITM;SE
p

;Ti;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TITM;SE
p

are, respectively,
the amplitude reflectivity and transmissivity of the input
test mirror and signal-extraction mirror; q is an amplifica-
tion factor on the single pass through the crystal; τarm,SE

= Larm,SE/c is the single trip time in arm cavity of length
Larm and SE cavity of length LSE, with c being the speed of
light; φ= π/2 is the tuning of the SE cavity with respect to
the arm cavity; x= h0Larm is a small displacement of the
end mirror due to the GW strain h0; a is the average
amplitude of field inside the arm cavity and kp is the wave
vector of the carrier light field.
These expressions can be simplified by making several

approximations that are realistic for GWOs. We assume
that Ωτarm≪ 1 and ΩτSE≪ 1, so eiΩτarm;SE � 1þ
iΩτarm;SE; Ti,s≪ 1, so Ri � 1� T2

i =2 ¼ 1 � 2γarmτarm
and Rs � 1 � T2

s =2 ¼ 1 � 2γτarm, where γarm, γ are the
arm cavity and the signal-extraction cavity linewidth,
respectively; and the single-pass optical gain is small: q≪
1, so eq ≈ 1+ q= 1+ χτSE, where χ is an effective para-
metric gain. In these assumptions, we obtain Eq. (6) for
the output noise and signal. This allows us to construct
the Hamiltonian presented in Eqs. (1–5).
We would like to point out the limits of this approx-

imation: it is valid only until coupling and signal fre-
quencies are much smaller than the free spectral range of

the arm cavity: Ω, ωs≪ ωFSR≡ c/2Larm. This condition
sets a limit on the transmissivity of the ITM:
T2
i � LSE=Larm, and restricts the applicability of the

derived simplified equations to a detector with a relatively
short arm length (e.g., Advanced LIGO). A longer detector
(such as the baseline GWO chosen as a reference in
Figs. 2–4) would require a more sophisticated expression
with the higher longitudinal resonances of the arm cavity
taken into account. The assumption of a small transmission
of the SE mirror is often not valid in real designs, leading to
additional contributions in the noise spectrum. We per-
form the full analysis, which avoids these limitations, in
Section 5 of the Supplementary Materials.
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