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Net-FLICS: fast quantitative wide-field
fluorescence lifetime imaging with
compressed sensing – a deep learning
approach
Ruoyang Yao1, Marien Ochoa1, Pingkun Yan 1 and Xavier Intes1

Abstract
Macroscopic fluorescence lifetime imaging (MFLI) via compressed sensed (CS) measurements enables efficient and
accurate quantification of molecular interactions in vivo over a large field of view (FOV). However, the current data-
processing workflow is slow, complex and performs poorly under photon-starved conditions. In this paper, we
propose Net-FLICS, a novel image reconstruction method based on a convolutional neural network (CNN), to directly
reconstruct the intensity and lifetime images from raw time-resolved CS data. By carefully designing a large simulated
dataset, Net-FLICS is successfully trained and achieves outstanding reconstruction performance on both in vitro and
in vivo experimental data and even superior results at low photon count levels for lifetime quantification.

Lifetime, which is an intrinsic property of fluorescent
molecules, describes the time that a fluorophore spends in
the excited state before returning to the ground state.
Fluorescence lifetime imaging (FLI) provides unique
additional information to intensity imaging with the
advantages of being independent of the fluorophore
concentration (before quenching) and minimal suscept-
ibility to the changes in optical properties. Fluorescence
lifetime imaging microscopy (FLIM) is widely applied
to increase the multiplexing power, sense changes in
microenvironment (pH, pO2, etc.)

1, and monitor mole-
cular interactions such as performed via Förster reso-
nance energy transfer (FRET) studies. Coupled with
multispectral or hyperspectral imaging, FLIM can unveil
enriched information in the lifetime and intensity spec-
tra2. Recently, we reported the development of a hyper-
spectral time-resolved wide-field system for macroscopic
fluorescence lifetime imaging (MFLI)3. The system sup-
ports structured light illumination and single-pixel

detection over an 8 × 6 cm2
field of view (FOV) via two

digital micromirror devices (DMDs) and hyperspectral
(80 nm range in 16 wavelength channels) data acquisition
via a Photomultiplier Tube based Time-Correlated Single
Photon Counting (PMT-TCSPC) spectrophotometer,
which enables efficient whole-body FLI of live subjects.
With time-resolved CS signals S collected with patterns P,
both intensity image IA and lifetime image Iτ can be
reconstructed.
However, the data-processing workflow necessesary to

generate the spatially resolved quantitative FLI images can
be time-consuming, susceptible to noise and requires user
inputs to define the key parameters of the core iterative
procedures. More precisely, the classical workflow
recovers IA and Iτ from three steps: (1) Solve the inverse
problems PIA(t)= S(t) with CS-based4 solvers for each
time gate t, where P is the sensitivity matrix formed by the
pattern weights. (2) Retrieve lifetime values τi,j from the
time point spread function (TPSF) curve Ci,j with the least
squares method (LSM)-based fitting for every pixel of
interest, where i and j are the row and column indices of
the image. (3) Repeat (1)–(2) for each wavelength channel.
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Then, the reconstruction accuracy of the FLI output
images can depend on the selected regularization and (bi)-
exponential fitting parameters (e.g., in tail fitting). Hence,
there is great interest in developing a faster and more
robust imaging workflow to translate CS-based MFLI to
bed-side applications and for wide acceptance by non-
specialists.
In this regard, recent developments in deep learning

(DL) provide new avenues for image formation and pro-
cessing. Indeed, DL has led major advances in various
fields such as computer vision (CV) and natural language
processing (NLP)5. In particular, convolutional neural
networks (CNN) with convolutional layers for multilevel
feature extraction are successfully used for image pro-
cessing6, object recognition7, image super resolution8, and
even reconstruction9–11. Thus, they are well suited for
medical imaging tasks, such as tissue lesion detection and
segmentation12, label-free cell classification13, and super-
resolution microscopy14. In this letter, we report the
design and validation of a deep CNN named Net-FLICS
(fluorescence lifetime imaging with compressed sensing),
which enables direct DL-based fluorescence intensity and
lifetime imaging from time-resolved single-pixel datasets
for the first time. In addition to significantly shorter data-
processing time compared to the classical workflow
(referred to as TVRecon) based on the TVAL315 inverse
solver and LSM fitting, Net-FLICS demonstrates better
quantitative accuracy for common MFLI applications.
The network was entirely trained on a model-generated
simulation dataset, but successfully validated on in vitro
and in vivo experimental datasets in the challenging case
of Near-infrared (NIR) FLI, which is typically character-
ized by sub-nanosecond lifetimes.
The architecture of Net-FLICS shown in Fig. 1a is

inspired by two network designs: ReconNet9 and Residual
Network (ResNet)16. ReconNet can reconstruct intensity
images from random single-pixel measurements. Com-
posed of one fully connected layer and six convolutional
layers, it is 2–3 magnitudes faster and more robust against
noise than the state-of-the-art CS reconstruction algo-
rithms. ResNet, which is characterized by a “skip con-
nection” that bypasses nonlinear transformations, was
used to address possible non-converging issues during the
training of Net-FLICS16. It works by converting direct
mapping to residual mapping and enables training for
extremely deep neural networks. Net-FLICS takes an
array of size 256 × 512 as the input, which represents 512
CS measurements with 256 time gates, and outputs an
intensity image and a lifetime image, both of which have
sizes of 32 × 32, as the reconstruction prediction. Net-
FLICS contains three main segments: (1) A shared seg-
ment that recovers the sparsity information from CS
measurements, which is similar to the first step in
TVRecon3. The output from the first segment represents

the temporal point spread functions (TPSFs) of each pixel;
(2) An intensity reconstruction segment with one Res-
Block and one ReconBlock; (3) A lifetime reconstruction
segment with a 1D convolutional layer, two ResBlocks and
two ReconBlocks. Further details regarding the input data,
number of kernels, kernel sizes, activation function and
batch normalization (BN) can be found in Part 1 of sup-
plementary materials.
A large and comprehensive training dataset is critical

for the performance of any deep CNN. However, since
our hyperspectral wide-field platform was not introduced
until very recently, there is insufficient experimental data.
Thus, we designed a data generator, which mimics the
process of compressed-sensing-based fluorescence life-
time imaging. The EMNIST dataset17, which contains
~7e5 28 × 28 grayscale images that represent digits or
letters, was used as the raw data. From each grayscale
image, an intensity image and a lifetime image were
generated in the commonly seen range, i.e., 25–1600
photon counts and 0.3–1.5 ns for each pixel. For data
augmentation purpose, each letter/digit might be rotated,
and multiple images can be combined. With the intensity,
lifetime, and time step of the imaging system, we obtained
a decay curve for each pixel, which was then convoluted
with the instrumental response function (IRF) to obtain a
TPSF. Single-pixel measurements were calculated as the
weighted sum of TPSFs from all pixels in a Hada-
mard pattern, obtained by reshaping rows of a 1024×1024
Hadamard matrix. Finally, the time-resolved single-pixel
data were added with Poisson noise, and a subset was
selected as the input for Net-FLICS. A more complete
description of the proposed data generator is provided in
Part 2 of supplementary materials.
Net-FLICS was implemented with Keras18 using Ten-

sorFlow as its backend19. The mean squared errors (MSE)
between the reconstructed and the ground-truth inten-
sity/lifetime images were calculated, and their sum was
used as the loss function. The MSE of the lifetime was
given a higher weight of 1e5 because of its smaller range
compared to the intensity. RMSprop was chosen as the
optimizer20. The learning rate was reduced by half every
10 epochs from an initial value of 1e−3. In total,
32,000 samples were used as the training data, and 8000
were used for validation. The mean absolute error (MAE)
between the reconstructed and the ground-truth lifetime
images was chosen as the metric to evaluate the training
performance. The training was terminated when the
lifetime MAE on the validation set was not improved for
10 consecutive epochs, which was 73 in this case. Fig. 2a
shows the changes in MAE for intensity and lifetime
reconstruction on the training and validation datasets. On
a desktop with an Intel i9-7900X CPU and an NVIDIA
GeForce GTX 1080 Ti GPU, each epoch took 220–225 s,
which yielded a total training time of ~4.5 h. Finally, the
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model with the lowest lifetime validation error was used
to evaluate the performance of Net-FLICS. Because of the
pixels with extremely low intensity values and high
Poisson noise, the final lifetime MAE of the validation set
is more than twice larger than that of the training dataset.
Although the intensity range is covered in our training
data, the lifetime fitting for those pixels remains chal-
lenging. Meanwhile, the validation set has an even smaller
final intensity MAE than the training set. The reason can
be the allocation of more “harder” cases into the training
set, whereas the validation set contains more “easier”
cases, which also indicates no overfitting issues of Net-
FLICS training. To show the outputs of Net-FLICS at
distinct points in the architecture, 400 simulated samples
with random intensity, lifetime and noise variations were
used as the input. To display the results, maps were cre-
ated from the t-distributed Stochastic Neighbor Embed-
ding values (tSNE)21 calculated from the outputs after the
transpose layer of the common segment in Fig. 1c and
after the last ResBlock of the intensity and lifetime seg-
ments in Fig. 1b, d.

Since tSNE propitiates dimensionality reduction, it is
selected to visualize Net-FLICS data clusters by displaying
the low-dimensional points. Therefore, each point of the
map represents the position of a sample relative to the
data cluster. The common segment displays data points
that are combinations of the intensity and lifetime fea-
tures. A difference is observed in the tSNE distribution of
the intensity and lifetime segments, which display only
intensity and lifetime features, respectively. The intensity
and lifetime ranges of the common branch output are also
displayed and depend on the ranges of the 400 random
generated samples. Further explanation is provided in
Section 5 of supplementary materials.
To demonstrate the gains of Net-FLICS, its perfor-

mance was compared against TVRecon using a simulated
test set with 800 samples from our data generator. The
TVRecon workflow details are explained in Part 4 of
supplementary materials. The trained Net-FLICS took
~2.2 s in total to reconstruct 800 samples (<3 ms/sample),
whereas TVRecon yielded reconstructions using ~19.6 s
per sample, which is ~7000 times longer than Net-FLICS.
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Fig. 1 The architecture of Net-FLICS and feature maps at the end of three main segments visualized by t-SNE. a Net-FLICS architecture.
Outputs at different endpoints of Net-FLICS as displayed in t-SNE maps for b. Intensity segment in photo counts c. Common segment, and d Lifetime
segment in nano-seconds
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The distributions of the intensity and lifetime MAE for
800 reconstructions are shown in Fig. 2b. The structural
similarity index (SSIM) values are also calculated between
the reconstruction and the ground-truth. An MAE dis-
tribution closer to 0 indicates less variation of the lifetime
reconstructions against the ground-truth, and an SSIM
closer to 1 indicates higher structural similarity to the
intensity ground truth. As displayed in Table 1, Net-
FLICS outperforms TVRecon with lower MAE and higher
SSIM for both intensity and lifetime results.
To investigate the performance of Net-FLICS on sam-

ples unknown to the data generator, in vitro experimental
datasets were acquired with the proposed hyperspectral
time-resolved MFLI system3. A phantom with RPI letters

was prepared from stock solutions, which contained
AF750 dye (ThermoFisher Scientific, A33085) at ~5 µM
concentration for letters “R”, “I” and HITCI dye (Sigma
Aldrich, 252034) at ~40 µM for letter “P”. The use of a
homogeneous phantom is preferred, since MFLI focuses
on retrieving the fluorescence intensities and lifetimes
over macroscopic regions that typically exhibit limited
variations in both quantitative parameters. Since both “R”
and “I” contain AF750, they should yield similar lifetime
values. This feature of the phantom serves as experi-
mental validation. The same 512 Hadamard patterns in
the data generator were used for the acquisition with
exposure time of 1 s for each pattern, which yielded a total
acquisition of ~17 minutes. An excitation wavelength of
740 nm and detection wavelength with the maximum
fluorescence intensity at ~761 nm were used. To eliminate
the effect of laser jitters, the raw experimental TPSFs were
shifted, so that its 5% rising point of the 1st illumination
pattern (full-field) matched those from the simulated
TPSFs, which was typically implemented before the LSM-
based lifetime fitting. The reconstruction results for both
Net-FLICS and TVRecon are displayed in Fig. 3a. Net-
FLICS reconstructions are directly quantified with no
need for post-processing, whereas the background
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Fig. 2 Net-FLICS MAE training curves and final MAE distributions for 800 simulated samples. a Intensity and lifetime MAE during training. b
Distribution of the MAE of intensity and lifetime reconstructions for 800 simulated samples

Table 1 MAE and SSIM of intensity and lifetime
reconstruction results on 800 simulated samples

MAE SSIM

Intensity Lifetime Intensity Lifetime

TVRecon 13.80 ± 5.65 0.05 ± 0.02 0.90 ± 0.09 0.88 ± 0.09

NetFLICS 9.48 ± 3.63 0.02 ± 0.02 0.96 ± 0.05 0.95 ± 0.05
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lifetime pixels are set to 0 for TVRecon. Further details on
TVRecon are described in Part 4 of supplementary
materials. Fig. 3b displays the distribution of values per
reconstructed lifetime image. Two main distributions are
observed at ~0.5 ns and ~0.9 ns, which correspond to
AF750 (“R” and “I”) and HITCI (“P”). Compared to
TVRecon, a smaller variation is observed for both lifetime
components in Net-FLICS results, which is desired since
the phantom letters are homogenous and continuous.
This result can be further validated by the mean and

standard deviation of lifetime reconstruction values in
Table 2.
We further analyzed the performance of Net-FLICS and

TVRecon under different photon count levels through
simulated and in vitro experimental datasets. The simu-
lated set contained three levels, where the maximum CW
intensity of each letter/digit is distributed within 25–100
(Level 1), 100–400 (Level 2), and 400–1600 (Level 3). We
used SSIM to evaluate intensity reconstructions and MAE
for lifetime reconstructions. The results are displayed in
Part 3 of supplementary materials. Although Net-FLICS
displays a smaller-intensity SSIM for Level 1, the lifetime
MAE, which is typically more important for MFLI appli-
cations, is much lower than TVRecon at all photon count
levels.
The in vitro experiment contained six wells of AF750

with varying concentrations (1000 nM, 500 nM, 250 nM,
125 nM, 62.5 nM, and 31.5 nM), as displayed in Fig. 3c.
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Table 2 Mean and standard deviation of lifetime
reconstruction results on the in vitro "RPI" dataset

Lifetime (ns) Letter “R” Letter “P” Letter “I”

TVRecon 0.48 ± 0.08 0.85 ± 0.11 0.49 ± 0.05

NetFLICS 0.48 ± 0.02 0.84 ± 0.07 0.47 ± 0.03
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This experimental design enabled us to compare the
reconstruction performance of the same lifetime on a
wide range of photon levels. The data processing steps are
identical to those in the “RPI” phantom experiment. Since
all wells contain the same dye, the distribution of the
lower concentrations should ideally be similar to the
distribution of the 1000 nM concentration. As shown in
Fig. 3d, the outlier number in the TVRecon reconstruc-
tions significantly increases with fewer photons. In con-
trast, Net-FLICS yields more localized distributions at
~0.5 ns even for the lowest concentration. The mean
lifetime values and standard deviations are quantified in
Table 3. For both approaches, the standard deviations
increase when the concentration of AF750 decreases due
to higher Poisson noise. However, Net-FLICS consistently
outperforms TVRecon at all photon count levels and
delivers reliable results for the noisiest cases.

Finally, we tested the performance of Net-FLICS using
an in vivo mouse dataset3. The mouse was injected with
transferrin-conjugated AF700 and AF750, and the mea-
surements were taken 4 h and 6 h post injection with the
single-pixel system3 to analyze the FRET interaction
inside the liver and urinary bladder over time. Measure-
ments at the emission wavelength with the highest
intensity (730 nm) were selected. Unlike the above in vitro
experiments, only the first 400 Hadamard pattern pairs,
ranked by spatial frequency, were used to achieve shorter
data acquisition time22. Shorter acquisition times are
desired due to animal handling protocols, so the pattern
number was reduced. The size of the first Conv1D layer of
Net-FLICS varied, but all other structures remained the
same. The mean and standard deviation of lifetime values
for both organs from two approaches are displayed in
Table 4. In such scenarios, it is not possible to obtain a
ground truth, so we are limited in reporting the descrip-
tive statistics though reported values are in agreement
with previousy published results3. As displayed in Fig. 4
and in accordance with the in vitro experiments, the
reconstructions from Net-FLICS obtain a smaller varia-
tion than TVRecon. The smaller standard deviations for
Net-FLICS result in smoother FRET mean lifetime maps,
which are expected for in vivo conditions. Indeed, as these
measurements were obtained from intact live animals, the
fluorescence maps acquired on the animal surface are
diffused by nature and consequently should demonstrate
smooth features in both intensity and FLI.
In summary, we reported a new CNN named Net-

FLICS, which enables us to generate quantitative fluor-
escence intensity maps and FLI images at computational
speeds 4 orders of magnitude faster than the current
inverse-based and fitting methodologies (~7000 times our

Table 3 Mean and standard deviation of lifetime
reconstruction results on the in vitro wellplate dataset

nM 1000 500 250 125 62.5 31.5

TV Recon 0.46 ± 0.04 0.47 ± 0.05 0.48 ± 0.08 0.43 ± 0.10 0.47 ± 0.15 0.53 ± 0.18

Net FLICS 0.50 ± 0.01 0.48 ± 0.02 0.45 ± 0.02 0.50 ± 0.02 0.46 ± 0.04 0.47 ± 0.06

Table 4 Mean and standard deviation of lifetime
reconstruction results on the in vivo mouse dataset

Lifetime (ns) Liver (4 h) Bladder (4 h) Liver (6 h) Bladder (6 h)

TVRecon 0.75 ± 0.17 0.90 ± 0.10 0.64 ± 0.26 0.93 ± 0.08

NetFLICS 0.77 ± 0.12 0.88 ± 0.10 0.58 ± 0.17 0.89 ± 0.10
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Fig. 4 In vivo intensity and mean lifetime reconstructions at 4 hours and 6 hours post-injection
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computational platform). This novel network design was
trained and extensively validated using a model-generated
simulation dataset that removed the need to train with
experimental data. Moreover, it was also validated with
independent experimental datasets that were not from the
data generator. In all cases, both in vitro and in vivo, Net-
FLICS produced quantitative intensity and FLI maps with
improved accuracy than the classical TVRecon approach
previously used.
Of importance to numerous bio-photonics applications,

the FLI quantification provided by Net-FLICS was
superior under photon-starved conditions. Hence, we
expect that Net-FLICS and other deep learning meth-
odologies will further cement the utility of lifetime-based
parameters for biomedical applications. Furthermore,
Net-FLICS was trained via a model-based approach but
still provided outstanding results with experimental data
without requiring a tweaking of network parameters.
Hence, Net-FLICS is a fitting-free and inverse solver-free
user-friendly methodology that could improve the
acceptance of FLI by non-expert user communities such
as biologists, drug development scientists, and surgeons.
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