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Abstract
Implicit summation is a technique for the conversion of sums over intermediate states in multiphoton absorption
and the high-order susceptibility in hydrogen into simple integrals. Here, we derive the equivalent technique for
hydrogenic impurities in multi-valley semiconductors. While the absorption has useful applications, it is primarily
a loss process; conversely, the non-linear susceptibility is a crucial parameter for active photonic devices. For Si:P,
we predict the hyperpolarizability ranges from χ(3)/n3D = 2.9 to 580 × 10−38 m5/V2 depending on the frequency,
even while avoiding resonance. Using samples of a reasonable density, n3D, and thickness, L, to produce third-
harmonic generation at 9 THz, a frequency that is difficult to produce with existing solid-state sources, we predict
that χ(3) should exceed that of bulk InSb and χ(3)L should exceed that of graphene and resonantly enhanced
quantum wells.

Introduction
Multiphoton absorption requires a high intensity, and

was first observed shortly after the invention of the laser
using impurities in solids1 and alkali vapor2. Although
multiphoton absorption is useful for metrology and
modulators, and can be enhanced where there is near-
resonance of an intermediate state as in the case of Rb3, it
is essentially a loss process contributing an imaginary part
to the non-linear susceptibility. The corresponding real
part is responsible for a great variety of wavelength con-
version processes such as harmonic generation, first
observed in quartz4 and later in atomic vapors5 including
alkalies6. THz multiphoton absorption has been shown to
be very large in hydrogenic shallow impurities in semi-
conductors, even without intermediate state resonances7,
due to the large dielectric screening and low effective
mass. Here, we predict giant values for the real part of the
THz non-linear susceptibility for doped silicon and

germanium. This finding opens access to novel applica-
tions for these materials in THz photonics. For example,
tripling the output of a 2–4 THz quantum cascade laser
through third-harmonic generation would fill the fre-
quency gap currently only filled by larger, more expensive
systems. We show that a good efficiency can be obtained
for third-harmonic generation with doped silicon and
germanium. Our theory can be readily applied to any
donor in any semiconductor host where the effective mass
approximation is valid, and our discussion makes it clear
that a giant value of χ(3) is expected for donors with a
small binding energy in a host with a large dielectric
constant and small effective mass.
The theory developed in this paper is appropriate for

frequencies both near to and far from loss-inducing
resonances, including the effects of effective mass aniso-
tropy, multi-valley interactions and the central cell cor-
rection. The method could easily be applied to other
systems with complicated potentials, such as multi-
quantum wells. Although this work focuses on perturba-
tive harmonic generation, we anticipate that shallow
impurities may also be useful for non-perturbative high-
harmonic generation (HHG)8,9 taking advantage of
the excellent control over the carrier-envelope phase of
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few-cycle pulses in this THz regime, which can be used to
enhance HHG10.

Results
The implicit summation technique
From Nth-order perturbation theory7,11 the N-photon

absorption (NPA) transition rate may be written as

wðNÞ ¼ 2π
2παfs
� �N

N
MðNÞ�� ��2 E2

H

εN=2
r INa

" #
INmΓ

ðNÞ

�h2
ð1Þ

where Ia ¼ E2
H=�ha

2
B, aB is the Bohr radius, EH the Hartree

energy, and αfs the fine structure constant. M(N) is a
dimensionless transition matrix element, and Im is the
intensity of the light in the medium with relative dielectric
permittivity εr. The lineshape function Γ(N)(ω) has unit
area. For silicon and germanium donors, the factors inside
the bracket are renormalized, and of particular impor-
tance here Ia is ten orders of magnitude smaller for silicon
than it is for hydrogen. This is apparent from the formulae
of the Hartree energy and Bohr radius for donors in these
materials: EH ¼ mtðe2=4πϵ0εr�hÞ2, and
aB ¼ 4πϵ0εr�h

2=mte2, where mt is the transverse effective
mass and εr the dielectric constant12. Both germanium
and silicon have a small mt and large εr , raising the Bohr
radius and lowering the binding energy. The wavefunction
is therefore significantly larger than that of alkali atoms,
leading to an enhanced dipole matrix element and hence a
substantially stronger interaction with light.

The details of the spectrum given by Eq. (1) are con-
trolled by M(N), which is influenced in silicon by the
indirect valley structure, the anisotropic effective mass,
and the donor central cell correction potential. Our main
aim here is to calculate these effects. For single-photon
absorption (N = 1) between states |ψg〉 (the ground state)
and |ψe〉 (the excited state), Mð1Þ ¼ ψe ϵ:rj jψg

D E
=aB,

where is a unit vector in the polarization direction, and
Eq. (1) reduces to Fermi’s golden rule. For two-photon
absorption,

Mð2Þ ¼ EH
�ha2B

X

j

ψe ϵ:rj jj� �
j ϵ:rj jψg

D E

ωjg � ωeg=2

in the E.r gauge, which may be written as M(2) = 〈ψe|
ζG1ζ|ψg〉 where ζ ¼ ϵ:r=aB,

Gn ¼ EH
�h

X

j

jj i jh j
ωjg � nω
� � ð2Þ

and ω = ωeg/N. The states |j〉 are intermediate states, and
along with |ψe〉 & |ψg〉 they are eigenstates of
H jj i ¼ �hωj jj i, where H is the Hamiltonian in the dark.

For general multiphoton absorption,

MðN�2Þ ¼ ψe ζGN�1ζ¼ ζG2ζG1ζj jψg

D E
ð3Þ

The summation in Eq. (2) can be avoided11 by noticing
that (H − Wn)Gn = EH, where Wn = ℏωg + nℏω, and ω =
ωeg/N as already mentioned, and by using the complete-
ness relation

P
j jj i jh j ¼ 1. In other words,

Gn ¼ EH H �Wnð Þ�1 ð4Þ
Rewriting Eq. (3),M(N) = 〈ψe|ζ|ψN−1〉 where |ψ0〉= |ψg〉

and |ψn〉 is the solution of the partial differential equation
(PDE) G�1

n ψn

�� � ¼ ζ ψn�1

�� �
. Instead of finding M(N) by

repeated application of Eq. (2), which requires infinite
sums (that might be reduced down to a few terms if there
are obvious resonances), we may now use Eq. (4) and the
PDE at each stage, which can be simpler.
The Nth-order susceptibility far from any multiphoton

resonances may also be calculated using the Nth-order
perturbation theory13. For example, the “resonant” term
in the third-order susceptibility, χ(3)(3ω), is

n3De4

ϵ0�h
3

X

l;k;j

ψg ϵ:rj jl
D E

l ϵ:rj jkh i k ϵ:rj jjh i j ϵ:rj jψg

D E

ðωlg � 3ωÞðωkg � 2ωÞðωjg � ωÞ

where e is the electron charge, and n3D is the con-
centration. χ(3) may be written in a similar form to Eqs (1)
and (3), and for Nth order,

χðNÞ ¼ CðNÞ aB

IN=2
a

" #
n3DeNþ1

�hN=2ϵ0
ð5Þ

where C(N) = 〈ψg|ζGN…G2ζG1ζ|ψg〉 is a dimensionless
matrix element that may be found in a similar way to
M(N), either by repeated application of Eq. (2)—as has
been done previously for alkali metal vapors6—or by using
the implicit summation method of Eq. (4) with the only
difference being ω ≠ ωeg/N. The antiresonant terms13 and
other non-linear processes, such as sum-frequency gen-
eration, can be calculated with simple modifications toWn

at each step.

Multi-valley theory for donors in silicon and germanium
In this section, we develop the multi-valley theory for

the nonlinear optical processes of donors based on the
effective mass approximation (EMA). For simplicity of
presentation, we describe the derivation for silicon; the
case of germanium is discussed in the Supplementary
Materials. It will become apparent that our theory is
readily applicable to any donor in any host as long as the
EMA is reliable.
To apply the method to donors, we require |ψg〉, ωg, |

ψe〉, ωe and H|ψn〉. Silicon and germanium are indirect
with equivalent conduction band minima (valleys) near
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the Brillouin zone edge; each minimum is characterized
by a Fermi surface that is a prolate ellipsoid with trans-
verse & longitudinal effective masses, mt,l. According to
the Kohn-Luttinger effective mass approximation14, the
state |ψj〉 of a shallow donor can be decomposed into
slowly varying hydrogenic envelope functions, one for
each valley, modulated by plane-wave functions corre-
sponding to the crystal momenta at the minima, kμ (and a
lattice periodic function that is unimportant here). We
write ψjðrÞ ¼

P
μ e

ikμ:rFj;μðrÞ where Fj,μ(r) is the slowly
varying envelope function. We have neglected the lattice
periodic part, uμ(r), of the Bloch functions for the sim-
plicity of presentation. A rigorous derivation with uμ(r)
included is provided in the Supplementary Materials, but
it does not lead to any change in the final equations for
the envelope functions (Eqs (7) and (8) below).
We separate the potential into the slowly varying

Coulomb term of the donor V(r), and a rapidly varying
term due to the quantum defect that is short range, U(r),
referred to as the central cell correction (CCC). Within
the EMA, the kinetic energy term in the Hamiltonian
operates only on the envelope function, and the EMA
Schrodinger equation may be written as

X

μ

eikμ:r H0 þ U � �hωj
� �

Fj;μðrÞ ¼ 0 ð6Þ

where H0 includes the Coulomb potential V(r): E�1
H H0 ¼

� 1
2 a

2
B ∂2x þ ∂2y þ γ∂2z

h i
� aBr�1 using a valley-specific

coordinate system (x, y, z where z is the valley axis, i.e.,
the valley-frame is rotated relative to the lab-frame of x1,
x2, x3). The kinetic energy has cylindrical symmetry
because γ = mt/ml ≠ 1, and V(r) and U(r) are spherical
and tetrahedral respectively. H0 produces wave functions
that are approximately hydrogen-like, and U(r) mixes
them to produce states that transform as the A1, E and T2

components of the Td point group.
We take U(r) to be very short range, and we neglect the

small change in the envelope functions over the short
length scale 2π/|kμ|. Premultiplying Eq. (6) by e�ikμ′:r and
averaging over a volume (2π/|kμ|)

3 around r, the Schro-
dinger eqn now reads
H0 � �hωj
� �

Fj;μðrÞ þ
P

μ′ Uμμ′δðrÞFj;μ′ðrÞ ¼ 0, where δ(r) is
the Dirac delta function, and Uμμ′ ¼

R
dr eiðkμ′�kμÞ:rUðrÞ.

For an A1 state, all the envelope functions have the same
amplitude at r = 0, hence,P

μ′ Uμμ′δðrÞFj;μ′ðrÞ ¼ �UccδðrÞFj;μðrÞ, where
Ucc ¼ �P

μ′ Uμμ′. It is found experimentally that for E
and T2 states, the CCC has a rather small effect, and so we
neglect it. Since H0 has cylindrical symmetry, the com-
ponent of angular momentum about the valley axis is a
conserved quantity, i.e., Fj,μ(r) = eimϕfj,m,μ(r, θ), where m is
a good quantum number, and now fj,m,μ is a 2D function
only. Substituting into the Schrodinger eqn, pre-
multiplying by e−im′ϕ and finally integrating over ϕ, the

eigenproblems are

H ðmÞ
0 � UccδðrÞ � �hωj

h i
f ðA1Þ
j;m;μðr; θÞ ¼ 0

HðmÞ
0 � �hωj

h i
f ðE;T2Þ
j;m;μ ðr; θÞ ¼ 0

ð7Þ

where H ðmÞ
0 ¼ H0 þ EHa2Bm

2/2(r sin θ)2. We solve Eq. (7)
using a 2D finite element method (FEM) (see Supple-
mentary Materials).

We focus on silicon, in which case the valley index, μ,
runs over (±1, ±2, ±3), where 1, 2, 3 are the three crystal
axes, and we let the light be polarized along a crystal axis,
x1, by way of illustration; the calculation for germanium
and other polarization directions is described in the
Supplementary Materials. For the μ= ±1, ±2, ±3 valleys,
aBζμ = z, x, y = r cos θ, r sin θ cos ϕ, r sin θ sin ϕ,
respectively, because each has its coordinate rotated so
that z is the valley axis. Following the expansion of ψj in
terms of the fj,m,μ, we write the intermediate state func-
tions as ψnðrÞ ¼

P
m;μ e

imϕeikμ:rfn;m;μðr; θÞ, substitute
them into G�1

n ψn ¼ ζψn�1, premultiply by e�ikμ′:r , average
over a volume of (2π/|kμ|)

3, premultiply by e−im′ϕ, and
finally, integrate over ϕ. Since f0,0,μ = fg,0,μ for all μ, we find
that fn,m,3 = i−mfn,m,2 and fn,m,−μ = fn,m,μ, and

H ðmÞ
0 �Wn �D

h i
fn;m;1 � 2Dfn;m;2 ¼ ðEH=aBÞr cosθfn�1;m;1

H ðmÞ
0 �Wn � 2D

h i
fn;m;2 �Dfn;m;1 ¼ ðEH=aBÞr sinθ fn�1;m�1;2 þ fn�1;mþ1;2

� �
=2

ð8Þ
where D ¼ UccδðrÞδm;0=3 and δm,0 is the Kronecker delta.
In the above equations we drop the valley-specific coor-
dinates in fn,m,μ for notational simplicity, and the coordi-
nates in HðmÞ

0 and the right hand side are understood to
belong to the valley of the envelope function that they
act on.

It is evident that Eq. (8) are not coupled by Ucc when the
envelope function is zero at the origin. The ground state |
ψ0〉= |ψg〉 has only m = 0 components, and it has even
parity. Therefore, |ψ1〉 has odd parity according to Eq. (8),
so the Ucc coupling term is suppressed. By the same logic,
the Ucc coupling is only non-zero for even n and m= 0. In
the case of fn;m;1

�� �
, there is only dipole coupling to the

functions with the same m, while for fn;m;2

�� �
the dipole

coupling is to states with Δm= ±1. The latter couplings
are identical, so fn,−m,μ= fn,m,μ. Figure 1 shows how the
intermediate states are coupled by dipole excitation and
the CCC.
Equation (8) can be solved by sequential application of

the 2D FEM15. To test our numerical calculation we first
compute C(3) for hydrogen, and each of the resonant and
antiresonant terms is shown in Fig. 2. Their sum is shown
in Fig. 3, and we find excellent agreement within 0.2% of
the previous result obtained from a Sturmian coulomb
Green function in ref. 16.
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Discussion
Giant third-order nonlinear susceptibility
Since silicon and germanium donors have an isotropic

potential in an isotropic dielectric, the lowest-order
nonlinear response is determined by χ(3). The χ(3) spec-
trum for each (including the antiresonant terms) is shown
in Fig. 3. We took the parameters for silicon obtained
from spectroscopic17 and magneto-optical measure-
ments12,18, which are γ ≈ 0.208, aB ≈ 3.17 nm and EH ≈
39.9 meV. The parameters for germanium are γ ≈ 0.0513,
aB ≈ 9.97 nm and EH ≈ 9.40 meV19. Resonances occur
when 3ω= ωeg, labeled according to |ψe〉, and there are
also sign-changes at which |χ(3)| goes to zero. In the range
of frequency shown, we also observe a two-photon reso-
nance for 1sA1→ 1sE, which is an obvious illustration of

the need for a multivalley theory. There is no 3ω reso-
nance with 1sT2 within the approximations made above in
which there is no intervalley dipole coupling. The effect of
Ucc on χ(3) and the NPA matrix element is shown in Fig. 4.
The low-frequency response of C(3) is illustrated at

n = 0 n = 1 n = 2 n = 3

⎪f3,0,1〉⎪f2,0,1〉⎪f1,0,1〉⎪f0,0,1〉

⎪f0,0,2〉

⎪f1,±1,2〉

⎪f2,0,2〉

⎪f2,±2,2〉

⎪f3,±3,2〉

m = 0

m = ±1

m = ±2

m = ±3

⎪f3,±1,2〉

Fig. 1 Multiphoton intermediate states fn,m,μ and their interactions
produced by dipole excitation polarized along x1 (horizontal arrows
for the μ = 1 valley and diagonal arrows for the μ = 2 valley) and
produced by Ucc (vertical arrows)
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and 2sA1 (4PA) matrix element on the right are due to the (2ω)
resonance with the intermediate 1sE state
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100 GHz. Two higher-frequency curves are included, with
both far from 3ω resonances, half way between the 2p0
and 2p± resonances, and between the 3p0 and 3p±. We
choose these average frequencies since χ(3) for Si:P varies
slowly around them (see Fig. 3) and hence would not be
sensitive to small experimental variations in the light
frequency. For the 2p-average frequency, the 2ω reso-
nance with the 1sE produces a coincidental zero-crossing
for Si:Bi. Example results for the intermediate state wave
functions produced in the calculation are shown in Fig. 5.
The state |ψ2〉 is much larger in extent (and in magnitude)
than |ψ0〉, and the extra node in the radial dependence
due to the contribution of 2s is visible at about 5 nm.
Similarly, the state |ψ3〉 is much larger in extent (and in
magnitude) than |ψ1〉.
The square bracket in Eq. (5) gives the scaling of χ(N)

from hydrogenic atoms in vacuum to hydrogenic impu-
rities in semiconductors, just as that in Eq. (1) does for
w(N), and as before, the much smaller Ia greatly increases
the strength of the non-linearity. For example, the low-
frequency limit of the hyperpolarizability χ(3)/n3D for Si:P
is much larger than that for hydrogen or alkali metal
vapors such as Rb6, as shown in Fig. 3.
Some of the highest values of χ(3) have been reported for

solids, e.g., 2.8 × 10−15 m2/V2 for InSb20 and 2 × 10−16 m2/
V2 for GaTe21. To convert the hyperpolarizability to a
bulk χ(3) value requires the concentration. To match InSb
with Si:P at low frequency where C(3) ≈ 1 (Fig. 4) (and χ(3)/

n3D = 2.9 × 10−38 m5/V2) requires a donor density of n3D
= 1017 cm−3 (where the donor–donor distance is 10aB).
At high frequency, the hyperpolarizability is much higher,
but the density should be lower to avoid inhomogeneous
concentration broadening of the nearby excited levels. For
example, C(3) ≈ 20 between the 2p0 and 2p± resonances at
ω ¼ ω2p=3 ¼ 2π ´ 3:2THz (Fig. 4), and we match InSb at
a density of n3D = 5 × 1015 cm−3 at which concentration
the 2p lines are well resolved22. If 3ω is moved even closer
to the 2p± resonance (or if the resonance is tuned with a
magnetic field18), then χ(3) could easily exceed InSb.
Losses due to dephasing by phonon scattering may
become important if the time spent in the intermediate
states exceeds the phonon lifetime. Since the inverse of
the former is given approximately by the detuning (ΔfΔt ≥
1/2π) and the inverse phonon-limited width (1/πT2=
1 GHz23,24), then this loss is negligible for much of the
spectrum. At 50 GHz below the 2p± line so that such
losses may be ignored, C(3) ≈ 200, and χ(3) is an order of
magnitude above InSb.
We are not aware of any larger values for bulk media,

but higher “bulk” values have been reported for 2D sys-
tems such as graphene and MoS2 for which χ(3)L data are
divided by an interaction thickness L to obtain χ(3); in
particular, reports for graphene range from 10−19 25,26 to
10−15 m2/V2 27 for near-IR excitation and up to 10−10 m2/
V2 in the THz region under resonant enhancement by
landau levels in a magnetic field28. A recent experiment
with single-layer graphene at room temperature reports a
remarkably high value of 1.7 × 10−9 m2/V2 for the THz
third-order nonlinear susceptibility29. In the case of cou-
pled quantum wells (QW), large values of χ(3) may be
engineered through resonances, as demonstrated up to
10−14 m2/V2 30. However, since the non-linear effect is
limited by the interaction length, the 2D χ(3)L is probably
a better figure of merit in these cases. For THz field-
enhanced graphene with 50 layers, χ(3)L = 9 × 10−20 m3/
V2 28, and for single-layer graphene χ(3)L = 5.1 × 10−19

m3/V2 29, or χ(3)L = 1.4 × 10−18 m3/V2 for resonant cou-
pled QWs30. Even higher values are predicted for doped
QWs up to χ(3)L = 5 × 10−17 m3/V2 31. To match this
value with Si:P at ω ¼ ω2p=3 ¼ 2π ´ 3:2THz and n3D =
5 × 1015 cm−3 (see above) would require a sample thick-
ness of L= 2 cm. Obviously, the required thickness can be
significantly reduced when close to resonance, or for
germanium.

Efficient third-harmonic generation
The non-linear susceptibility is important for predicting

the strength of frequency conversion processes such as
third-harmonic generation (3HG), and we use this as an
example application to investigate the utility of the med-
ium. A solution for the amplitude of the generated wave
produced by 3HG, neglecting absorption, is given by32.

⏐�0⏐ ⏐�1⏐

⏐�3⏐⏐�2⏐

Fig. 5 The wavefunctions |ψ0〉, |ψ1〉, |ψ2〉 and |ψ3〉 for Si:P (i.e., a
binding energy of ℏωg = −45.5meV) in the x3= 0 plane. The
frequency used for this calculation is the average of the 2p0 and 2p±
resonances, and the color scale is normalized separately for each
panel. The white bars on the top right indicate a length scale of 5 nm
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Converting to irradiance in MKS units,

Iout
Iin

¼ 3ωinχð3ÞLIin
4ϵ0n2c2

	 
2

¼ Iinfinn2D
x

Cð3Þ
	 
2

ð9Þ

where Iin is the irradiance of the input pump wave at
frequency fin, and n is the geometric mean of the refractive
indexes for the input and output waves, and n2D = n3DL.
Note that the isotropy mentioned earlier means that the
polarization of the input and output waves must be par-
allel. We ignored a factor for the phase matching, which is
unity if the length of the sample L≪ Lc, where the
coherence length Lc = πc/(3ωin[nout− nin]). Si:P at room
temperature has a nearly constant n = 3.4153 in the range
from 1 THz to 12 THz33, leading to typical values of Lc ≈
10 cm. The factor x = 6.9 × 1023W/cm2 × THz × cm−2 for
silicon. For comparison, germanium has x = 9.2 × 1019

W/cm2 × THz × cm−2.

To illustrate the possible applications of this high χ(N),
we note that two types of THz diode lasers are available,
the quantum cascade laser (QCL) from 0.74 THz34 to
5.4 THz35 with output powers of up to a few W36,37, and
the hot hole (p-Ge) laser38,39 with a similar range and
power. However, there is a large gap in the availability of
solid-state sources from about 5 THz to about 12 THz40,
where the GaAs Reststrahlen band renders laser operation
impossible. This is an important region for quantum qubit
applications41–44. Currently, the gap is only filled by lar-
ger, more expensive systems (difference frequency gen-
erators and free electron lasers). Tripling the output of
2–4 THz QCLs would fill the gap, but their output powers
are far smaller than those typical for a pump laser in
standard tripling applications, so a giant non-linearity is
critical. At ω ¼ ω2p=3 ¼ 2π ´ 3:2THz, C(3) ≈ 20, so for
n2D = 1016 cm−2 (see above), a 1% predicted conversion
may be obtained with 100 kW/cm2, and by moving to
50 GHz below the 2p± resonance this value could be
brought down to 10 kW/cm2, which is just about
achievable with a well focussed QCL, and would thus
provide enough output for spectroscopy applications. A
nonlinear process that may possibly reduce the 3HG
efficiency is multiphoton ionization45 since it reduces the
population of the donors in the ground state. When
ω ¼ ω2p=3, for example, a four-photon absorption takes
the electron to the continuum. We estimate this ioniza-
tion in Si:P using the implicit summation method and find
that the rate is w = 3.17 s−1 for Iin = 10 kW/cm2. This
result simply means that the pulses must be kept sig-
nificantly shorter than a second to avoid significant
ionization.
In summary, we calculated the absolute values of the

THz non-linear coefficients for the most common semi-
conductor materials, lightly doped silicon and germa-
nium, which are available in the largest, purest and most

regular single crystals known. The values we obtain for
off-resonance rival the highest values obtained in any
other material even when resonantly enhanced, and the
material could gain new applications in THz photonics.
We also predict the highly efficient third-harmonic gen-
eration of THz light in doped silicon and germanium. Our
multi-valley theory for nonlinear optical processes of
donors in silicon and germanium can be readily applied to
any donor in any semiconductor host in which the
effective mass approximation is reliable.

Materials and methods
Details of the finite element computation used for sol-

ving the coupled partial differential equations (Eq. (8)) are
provided in the Supplementary Material.
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