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Abstract
Mid-infrared (MIR) light-emitting devices play a key role in optical communications, thermal imaging, and material
analysis applications. Two-dimensional (2D) materials offer a promising direction for next-generation MIR devices
owing to their exotic optical properties, as well as the ultimate thickness limit. More importantly, van der Waals
heterostructures—combining the best of various 2D materials at an artificial atomic level—provide many new
possibilities for constructing MIR light-emitting devices of large tuneability and high integration. Here, we introduce a
simple but novel van der Waals heterostructure for MIR light-emission applications built from thin-film BP and
transition metal dichalcogenides (TMDCs), in which BP acts as an MIR light-emission layer. For BP–WSe2
heterostructures, an enhancement of ~200% in the photoluminescence intensities in the MIR region is observed,
demonstrating highly efficient energy transfer in this heterostructure with type-I band alignment. For BP–MoS2
heterostructures, a room temperature MIR light-emitting diode (LED) is enabled through the formation of a vertical
PN heterojunction at the interface. Our work reveals that the BP–TMDC heterostructure with efficient light emission
in the MIR range, either optically or electrically activated, provides a promising platform for infrared light property
studies and applications.

Introduction
As an emerging member of the two-dimensional (2D)-

layered material family, black phosphorus (BP)1–6 has
been widely studied for its unique properties, such as in-
plane anisotropy5,7, infrared bandgap energy8–10, and high
carrier mobility11–14, which enable wide applications in
electronic and optoelectronic devices15,16. Due to the

efficiently tuneable bandgap energy through thickness
(0.3–2 eV) and electric-field (down to 0.05 eV)17–21

modulation, thin-film BP is considered a promising mid-
infrared (MIR) material, filling the energy gap between
semimetallic graphene and semiconducting transition
metal dichalcogenides (TMDCs) (1.0–2.5 eV)22. Utilizing
the MIR properties of thin-film BP, optoelectronic devi-
ces, such as MIR photodetectors and optical modulators
with high performance, have been demonstrated17,22–27.
A decent light-emission property is also crucial for

photonic and optoelectronic device applications. Previous
reports have focused on the visible and near-infrared
photoluminescence (PL) properties of monolayer and
few-layer BP (<5 layers)9,28–31. Until very recently, the
MIR PL of thin-film BP was investigated by Chen et al.,
revealing that thin-film BP is a promising material for

© The Author(s) 2020
OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Taihong Wang (wangth@sustech.edu.cn) or
Lin Wang (iamlwang@njtech.edu.cn) or Xiaolong Chen (chenxl@sustech.edu.cn)
1Department of Electrical and Electronic Engineering, Southern University of
Science and Technology, 518055 Shenzhen, China
2Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials
(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, 211816
Nanjing, China
Full list of author information is available at the end of the article
These authors contributed equally: Xinrong Zong, Huamin Hu, Gang Ouyang

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

MIR light-emission applications8. To achieve higher effi-
ciency and lower power-consumption devices, thin-film
BP with a better light-emission density is necessary. In
addition, more emission driving modes are also desirable.
For example, electrically driven MIR light emission
(electroluminescence/EL) is more favorable for practical
photonic and optoelectronic applications.
Due to the high-quality interface and lack of lattice

mismatch, vdWs heterostructures built from 2D-layered
materials, such as graphene and TMDCs, have been
intensively investigated for various applications, including
transistors32, solar cells33, photodetectors34, and light-
emitting devices35. In recent years, BP-based vdWs het-
erostructures have begun to attract great attention due to
their narrow bandgap and anisotropic lattice structure.
For example, BP–MoS2 heterostructures have enabled
high-performance photodetectors36 and high-gain logic
inverters37–39. BP–graphene heterostructures can sustain
a large pseudomagnetic field at the interface40.
Here, we introduce a high-quality van der Waals (vdWs)

heterostructure targeted for MIR light-emission applica-
tions constructed from thin-film BP and TMDCs, such as
monolayer tungsten diselenide (WSe2) and thin-film
molybdenum disulfide (MoS2). Combining density func-
tional theory (DFT) calculations41 and experimental
observations, a type-I band alignment is formed in the
BP–WSe2 heterostructure, and efficient energy transfer
from WSe2 to thin-film BP is enabled. As a result, a 192%
enhancement of the MIR PL is observed at a wavelength
of 2.79 μm, and this enhancement effect persists up to
3.89 μm. On the other hand, a PN heterojunction tuneable
by a source–drain voltage is achieved in the BP–MoS2
heterostructure, with which an MIR light-emitting diode
(LED) is demonstrated. In addition, highly anisotropic PL
and EL are observed in these BP–WSe2 and BP–MoS2
heterostructures, respectively. All the results suggest that
constructing BP–TMDC heterostructures is an efficient
and facile strategy for MIR light-emission investigations
and applications.

Results
Mid-infrared photoluminescence enhancement in
BP–WSe2 heterostructures
Figure 1 shows the DFT-calculated electron affinity and

bandgap size of monolayer WSe2 and BP. The detailed
band structures are further illustrated in Supplementary
Fig. 1. The bandgap size of BP decreases with increasing
thickness, consistent with previous theoretical calcula-
tions and experimental observations6,15,41. In addition, BP
shows a direct bandgap at all thicknesses, suggesting that
it is a promising material for light-emission applications.
To realize its application in the MIR region (2.5–25 μm),
we select thin-film BP with a layer number larger than six
to construct the heterostructure. According to the DFT

calculation, the BP–WSe2 heterostructure forms a type-I
band alignment. In this band alignment, thin-film BP
serves as a quantum well and can efficiently collect elec-
tron and hole pairs from adjacent monolayer WSe2

42. On
the other hand, monolayer WSe2 has a high optical
absorption and excellent quantum efficiency in the visible
region (complementary to the MIR range of thin-film
BP)43. Hence, it is an ideal optical absorption layer for
enhancing the luminescence efficiency of BP in terms of
the absorption wavelength, recombination efficiency, and
energy transfer.
Figure 2a shows a schematic diagram of the BP–TMDC

heterostructure. The bottom TMDC layer has a hexagonal
crystalline structure, with a layer of tungsten/molybde-
num atoms sandwiched between two selenium/sulfur
atom layers22. The phosphorus atoms in each layer of BP
form a folded anisotropic honeycomb structure15. The x-
and y directions are used to denote the armchair and
zigzag crystalline directions of BP, respectively. To build
this heterostructure, first, TMDC flakes and thin-film BP
were mechanically exfoliated onto 285-nm SiO2/Si and
polydimethylsiloxane (PDMS) substrates, respectively.
Then, the thin-film BP was transferred onto the TMDCs
using the PDMS-assisted transfer method44. To enhance
the vdWs interactions between BP and the TMDCs, the
heterostructures were further heated at a temperature of
200 °C for 10min. All operations were performed in a
glovebox filled with nitrogen to avoid BP surface oxida-
tion and achieve a high-quality vdWs interface. In this
work, the BP flakes were aligned with the TMDC layers
with random angles, and all the samples showed PL
enhancement in the MIR range. However, the alignment
angle between BP and the TMDCs can possibly influence
the detailed emission properties of the heterostructure,
which is outside the scope of this article. Further studies
on this effect are highly encouraged and will benefit the
heterostructure 2D materials community. Figure 2b
shows an optical image of a typical BP–WSe2 hetero-
structure sample. The contours of the monolayer WSe2
and thin-film BP flakes are outlined by orange and blue
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Fig. 1 Density functional theory investigation of BP–WSe2
heterostructures. Band diagram of monolayer WSe2 and BP (with
layer numbers from one to six) calculated by the HSE06 functional.
Type-I band alignment is formed in the BP–WSe2 heterostructures
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Introduction
As an emerging member of the two-dimensional (2D)-

layered material family, black phosphorus (BP)1–6 has
been widely studied for its unique properties, such as in-
plane anisotropy5,7, infrared bandgap energy8–10, and high
carrier mobility11–14, which enable wide applications in
electronic and optoelectronic devices15,16. Due to the

efficiently tuneable bandgap energy through thickness
(0.3–2 eV) and electric-field (down to 0.05 eV)17–21

modulation, thin-film BP is considered a promising mid-
infrared (MIR) material, filling the energy gap between
semimetallic graphene and semiconducting transition
metal dichalcogenides (TMDCs) (1.0–2.5 eV)22. Utilizing
the MIR properties of thin-film BP, optoelectronic devi-
ces, such as MIR photodetectors and optical modulators
with high performance, have been demonstrated17,22–27.
A decent light-emission property is also crucial for

photonic and optoelectronic device applications. Previous
reports have focused on the visible and near-infrared
photoluminescence (PL) properties of monolayer and
few-layer BP (<5 layers)9,28–31. Until very recently, the
MIR PL of thin-film BP was investigated by Chen et al.,
revealing that thin-film BP is a promising material for
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MIR light-emission applications8. To achieve higher effi-
ciency and lower power-consumption devices, thin-film
BP with a better light-emission density is necessary. In
addition, more emission driving modes are also desirable.
For example, electrically driven MIR light emission
(electroluminescence/EL) is more favorable for practical
photonic and optoelectronic applications.
Due to the high-quality interface and lack of lattice

mismatch, vdWs heterostructures built from 2D-layered
materials, such as graphene and TMDCs, have been
intensively investigated for various applications, including
transistors32, solar cells33, photodetectors34, and light-
emitting devices35. In recent years, BP-based vdWs het-
erostructures have begun to attract great attention due to
their narrow bandgap and anisotropic lattice structure.
For example, BP–MoS2 heterostructures have enabled
high-performance photodetectors36 and high-gain logic
inverters37–39. BP–graphene heterostructures can sustain
a large pseudomagnetic field at the interface40.
Here, we introduce a high-quality van der Waals (vdWs)

heterostructure targeted for MIR light-emission applica-
tions constructed from thin-film BP and TMDCs, such as
monolayer tungsten diselenide (WSe2) and thin-film
molybdenum disulfide (MoS2). Combining density func-
tional theory (DFT) calculations41 and experimental
observations, a type-I band alignment is formed in the
BP–WSe2 heterostructure, and efficient energy transfer
from WSe2 to thin-film BP is enabled. As a result, a 192%
enhancement of the MIR PL is observed at a wavelength
of 2.79 μm, and this enhancement effect persists up to
3.89 μm. On the other hand, a PN heterojunction tuneable
by a source–drain voltage is achieved in the BP–MoS2
heterostructure, with which an MIR light-emitting diode
(LED) is demonstrated. In addition, highly anisotropic PL
and EL are observed in these BP–WSe2 and BP–MoS2
heterostructures, respectively. All the results suggest that
constructing BP–TMDC heterostructures is an efficient
and facile strategy for MIR light-emission investigations
and applications.

Results
Mid-infrared photoluminescence enhancement in
BP–WSe2 heterostructures
Figure 1 shows the DFT-calculated electron affinity and

bandgap size of monolayer WSe2 and BP. The detailed
band structures are further illustrated in Supplementary
Fig. 1. The bandgap size of BP decreases with increasing
thickness, consistent with previous theoretical calcula-
tions and experimental observations6,15,41. In addition, BP
shows a direct bandgap at all thicknesses, suggesting that
it is a promising material for light-emission applications.
To realize its application in the MIR region (2.5–25 μm),
we select thin-film BP with a layer number larger than six
to construct the heterostructure. According to the DFT

calculation, the BP–WSe2 heterostructure forms a type-I
band alignment. In this band alignment, thin-film BP
serves as a quantum well and can efficiently collect elec-
tron and hole pairs from adjacent monolayer WSe2

42. On
the other hand, monolayer WSe2 has a high optical
absorption and excellent quantum efficiency in the visible
region (complementary to the MIR range of thin-film
BP)43. Hence, it is an ideal optical absorption layer for
enhancing the luminescence efficiency of BP in terms of
the absorption wavelength, recombination efficiency, and
energy transfer.
Figure 2a shows a schematic diagram of the BP–TMDC

heterostructure. The bottom TMDC layer has a hexagonal
crystalline structure, with a layer of tungsten/molybde-
num atoms sandwiched between two selenium/sulfur
atom layers22. The phosphorus atoms in each layer of BP
form a folded anisotropic honeycomb structure15. The x-
and y directions are used to denote the armchair and
zigzag crystalline directions of BP, respectively. To build
this heterostructure, first, TMDC flakes and thin-film BP
were mechanically exfoliated onto 285-nm SiO2/Si and
polydimethylsiloxane (PDMS) substrates, respectively.
Then, the thin-film BP was transferred onto the TMDCs
using the PDMS-assisted transfer method44. To enhance
the vdWs interactions between BP and the TMDCs, the
heterostructures were further heated at a temperature of
200 °C for 10min. All operations were performed in a
glovebox filled with nitrogen to avoid BP surface oxida-
tion and achieve a high-quality vdWs interface. In this
work, the BP flakes were aligned with the TMDC layers
with random angles, and all the samples showed PL
enhancement in the MIR range. However, the alignment
angle between BP and the TMDCs can possibly influence
the detailed emission properties of the heterostructure,
which is outside the scope of this article. Further studies
on this effect are highly encouraged and will benefit the
heterostructure 2D materials community. Figure 2b
shows an optical image of a typical BP–WSe2 hetero-
structure sample. The contours of the monolayer WSe2
and thin-film BP flakes are outlined by orange and blue
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Fig. 1 Density functional theory investigation of BP–WSe2
heterostructures. Band diagram of monolayer WSe2 and BP (with
layer numbers from one to six) calculated by the HSE06 functional.
Type-I band alignment is formed in the BP–WSe2 heterostructures
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dashed lines, respectively. The thickness of thin-film BP is
~6 nm, as determined by atomic force microscopy (AFM)
and PL measurements (see Supplementary Fig. 2). The
Raman spectra of the BP–WSe2 stack show the char-
acteristic vibration modes of both thin-film BP and
monolayer WSe2 (see Supplementary Fig. 3), indicating
successful preparation of the heterostructure.
We first examined the PL properties of the BP–WSe2

heterostructure in the visible region under 2.33- eV laser
excitation. Figure 2c shows the PL emission mapping of
the sample at room temperature. High PL intensity is
observed in the monolayer WSe2 region due to its high
light absorption and quantum efficiency, consistent with
previous studies45,46. On the other hand, significant PL
quenching is observed in the BP–WSe2 heterojunction
area. As shown in Fig. 2d, the PL intensity in the het-
erostructure region decreases by 80% compared with that
of monolayer WSe2. This observation agrees with our
theoretical prediction of the type-I band alignment
between monolayer WSe2 and BP, which enables efficient
carrier transfer from the wide bandgap WSe2 to the nar-
row bandgap BP. As a result, the photogenerated electron
and hole densities in WSe2 decrease, leading to a sig-
nificant PL intensity reduction in the heterostructure
region. Another argument is that the PL intensity
reduction for WSe2 in the heterostructure region is due to
the light absorption of the top BP layer. To exclude this
possibility, we assembled another BP–WSe2 hetero-
structure under ambient conditions with a 7.5-nm-thick

BP flake. Due to the reaction of BP with water and oxygen
during the fabrication process under ambient conditions,
a thin phosphorus oxide (PxOy ~ 2 nm) will form at the
BP–WSe2 interface, resulting in a BP–PxOy–WSe2 three-
layer structure20,47. The interface oxide layer can effec-
tively prevent charge transfer between BP and WSe2, and
hence, a small reduction of the visible PL intensity should
be observed in the heterostructure region. In this device,
only a 33% reduction of the PL intensity is observed in the
heterostructure region (see Supplementary Fig. 4), indi-
cating that the contribution from the light absorption by
the top BP layer is insignificant.
To further demonstrate the efficient energy transfer in

the BP–WSe2 heterostructure, we characterized its MIR
light-emission properties under 2.33-eV laser excitation.
The incident laser power was fixed at 20 μWμm2 with a
laser spot diameter of ~15 μm. PL studies at additional
incident laser powers are shown in Supplementary Fig. 5.
Figure 3a shows the MIR PL spectra of the BP film and
BP–WSe2 heterostructure region, where the BP thickness
is approximately 5 nm. We achieve a 165% enhancement
of the MIR PL intensity in the heterostructure region,
which is defined as (IBP-WSe2 − IBP)/IBP. Here, IBP-WSe2 and
IBP are the MIR PL intensities of the BP and BP–WSe2
heterostructure regions, respectively. In addition, the PL
peaks of the two regions are at the same position of
~3.18 μm, indicating that carriers transferred from
monolayer WSe2 are effectively confined in the BP
quantum well and then recombined with MIR light
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emission, as illustrated in Fig. 3b. For the BP–PxOy–WSe2
heterostructure sample fabricated in air, the enhancement
at the heterostructure is only ~25%. This is due to the
presence of the phosphorus oxide at the interface, which
significantly reduces the carrier transfer rate from
monolayer WSe2 to BP. In addition, we characterized the
enhancement of the MIR PL intensity at additional laser-
excitation energies. Enhancement factors of 138% and
116% are achieved at excitation energies of 1.95 eV and
1.81 eV, respectively, as shown in Supplementary Fig. 6.
We attribute the excitation energy-dependent enhance-
ment factor to the optical absorption of monolayer WSe2.
A higher absorption can generate more electron–hole
pairs and thus result in a larger enhancement factor. At a
laser-excitation energy of 1.58 eV, which is below the
exciton energy of monolayer WSe2, no enhancement
effect is observed in the heterostructure region. This
phenomenon provides direct evidence that type-I band
alignment is achieved in the BP–WSe2 heterostructure.
We further performed MIR PL measurements of

BP–WSe2 heterostructures with BP thicknesses ranging

from 4 nm to 80 nm at 80 K. As shown in Fig. 3a, c, we
achieve a PL enhancement over a broad MIR region from
2.79 μm to 3.89 μm. For example, a 192% enhancement is
obtained in the heterostructure with 4-nm-thick BP (see
Fig. 3c). For the 16-nm-thick BP, the enhancement is
~32%. The PL enhancement of the heterostructures gra-
dually decreases as the thickness of BP increases. This
phenomenon can be attributed to two reasons. On the
one hand, the MIR emission from the BP–WSe2 hetero-
structure is contributed by two components (I= Is+ It).
The component Is comes from the self-generated
electron–hole pairs in BP, and It comes from the
electron–hole pairs transferred from monolayer WSe2. It
is obvious that higher It and smaller Is will lead to a larger
enhancement effect. For thicker BP flakes, the ratio
between It and Is decreases because thicker BP absorbs
more light and the bottom WSe2 layer absorbs less light.
On the other hand, the band bending of BP near the
BP–WSe2 interface can separate the electrons and holes,
as shown in Fig. 3b. Thicker BP flakes will lead to a larger
spatial separation between electrons and holes and will
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dashed lines, respectively. The thickness of thin-film BP is
~6 nm, as determined by atomic force microscopy (AFM)
and PL measurements (see Supplementary Fig. 2). The
Raman spectra of the BP–WSe2 stack show the char-
acteristic vibration modes of both thin-film BP and
monolayer WSe2 (see Supplementary Fig. 3), indicating
successful preparation of the heterostructure.
We first examined the PL properties of the BP–WSe2

heterostructure in the visible region under 2.33- eV laser
excitation. Figure 2c shows the PL emission mapping of
the sample at room temperature. High PL intensity is
observed in the monolayer WSe2 region due to its high
light absorption and quantum efficiency, consistent with
previous studies45,46. On the other hand, significant PL
quenching is observed in the BP–WSe2 heterojunction
area. As shown in Fig. 2d, the PL intensity in the het-
erostructure region decreases by 80% compared with that
of monolayer WSe2. This observation agrees with our
theoretical prediction of the type-I band alignment
between monolayer WSe2 and BP, which enables efficient
carrier transfer from the wide bandgap WSe2 to the nar-
row bandgap BP. As a result, the photogenerated electron
and hole densities in WSe2 decrease, leading to a sig-
nificant PL intensity reduction in the heterostructure
region. Another argument is that the PL intensity
reduction for WSe2 in the heterostructure region is due to
the light absorption of the top BP layer. To exclude this
possibility, we assembled another BP–WSe2 hetero-
structure under ambient conditions with a 7.5-nm-thick

BP flake. Due to the reaction of BP with water and oxygen
during the fabrication process under ambient conditions,
a thin phosphorus oxide (PxOy ~ 2 nm) will form at the
BP–WSe2 interface, resulting in a BP–PxOy–WSe2 three-
layer structure20,47. The interface oxide layer can effec-
tively prevent charge transfer between BP and WSe2, and
hence, a small reduction of the visible PL intensity should
be observed in the heterostructure region. In this device,
only a 33% reduction of the PL intensity is observed in the
heterostructure region (see Supplementary Fig. 4), indi-
cating that the contribution from the light absorption by
the top BP layer is insignificant.
To further demonstrate the efficient energy transfer in

the BP–WSe2 heterostructure, we characterized its MIR
light-emission properties under 2.33-eV laser excitation.
The incident laser power was fixed at 20 μWμm2 with a
laser spot diameter of ~15 μm. PL studies at additional
incident laser powers are shown in Supplementary Fig. 5.
Figure 3a shows the MIR PL spectra of the BP film and
BP–WSe2 heterostructure region, where the BP thickness
is approximately 5 nm. We achieve a 165% enhancement
of the MIR PL intensity in the heterostructure region,
which is defined as (IBP-WSe2 − IBP)/IBP. Here, IBP-WSe2 and
IBP are the MIR PL intensities of the BP and BP–WSe2
heterostructure regions, respectively. In addition, the PL
peaks of the two regions are at the same position of
~3.18 μm, indicating that carriers transferred from
monolayer WSe2 are effectively confined in the BP
quantum well and then recombined with MIR light
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emission, as illustrated in Fig. 3b. For the BP–PxOy–WSe2
heterostructure sample fabricated in air, the enhancement
at the heterostructure is only ~25%. This is due to the
presence of the phosphorus oxide at the interface, which
significantly reduces the carrier transfer rate from
monolayer WSe2 to BP. In addition, we characterized the
enhancement of the MIR PL intensity at additional laser-
excitation energies. Enhancement factors of 138% and
116% are achieved at excitation energies of 1.95 eV and
1.81 eV, respectively, as shown in Supplementary Fig. 6.
We attribute the excitation energy-dependent enhance-
ment factor to the optical absorption of monolayer WSe2.
A higher absorption can generate more electron–hole
pairs and thus result in a larger enhancement factor. At a
laser-excitation energy of 1.58 eV, which is below the
exciton energy of monolayer WSe2, no enhancement
effect is observed in the heterostructure region. This
phenomenon provides direct evidence that type-I band
alignment is achieved in the BP–WSe2 heterostructure.
We further performed MIR PL measurements of

BP–WSe2 heterostructures with BP thicknesses ranging

from 4 nm to 80 nm at 80 K. As shown in Fig. 3a, c, we
achieve a PL enhancement over a broad MIR region from
2.79 μm to 3.89 μm. For example, a 192% enhancement is
obtained in the heterostructure with 4-nm-thick BP (see
Fig. 3c). For the 16-nm-thick BP, the enhancement is
~32%. The PL enhancement of the heterostructures gra-
dually decreases as the thickness of BP increases. This
phenomenon can be attributed to two reasons. On the
one hand, the MIR emission from the BP–WSe2 hetero-
structure is contributed by two components (I= Is+ It).
The component Is comes from the self-generated
electron–hole pairs in BP, and It comes from the
electron–hole pairs transferred from monolayer WSe2. It
is obvious that higher It and smaller Is will lead to a larger
enhancement effect. For thicker BP flakes, the ratio
between It and Is decreases because thicker BP absorbs
more light and the bottom WSe2 layer absorbs less light.
On the other hand, the band bending of BP near the
BP–WSe2 interface can separate the electrons and holes,
as shown in Fig. 3b. Thicker BP flakes will lead to a larger
spatial separation between electrons and holes and will
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hence decrease the electron–hole recombination effi-
ciency. As a result, the enhancement factor is reduced for
thicker BP flakes. We also plot the MIR PL peak position
of the BP–WSe2 heterostructures as a function of BP
thickness and temperature, and the results are in good
agreement with previous reports on thin-film BP8 (see
Supplementary Figs. 7 and 8).
The highly anisotropic MIR light emission is still pre-

served in the BP–WSe2 heterostructures, as demonstrated
by the polarization-resolved PL spectra shown in Fig. 3d.
Here, the laser-excitation direction is fixed along the
armchair axis of BP, and the detection angle θ is the
intersection angle between the detection direction and
the armchair axis of BP.

Mid-infrared electroluminescence in BP–MoS2
heterojunction diodes
In contrast to the BP–WSe2 heterostructure, the

BP–MoS2 heterostructure forms a type-II band alignment
according to previous experimental observations36,37. In
addition, thin-film BP and MoS2 always show p-type and
n-type semiconducting characteristics, respectively, due
to the presence of defects1,2,39,48. As a result, a PN het-
erojunction is naturally formed at the BP–MoS2 interface,
and a diode can be built from this heterostructure.
Through tuning of the source–drain voltage, the transfer
of electrons from the MoS2 conduction band to the BP
conduction band is possible, enabling electrically driven
MIR light emission in BP.
Figure 4a, b shows a schematic and optical images of a

BP–MoS2 heterojunction diode, respectively. The thick-
ness of the BP flake is ~60 nm, as determined by AFM (see
Supplementary Fig. 2). We chose 7-nm-thick MoS2
instead of a monolayer, taking advantage of the higher
carrier mobility in thin-film MoS2

32. We first character-
ized the transport properties of thin-film BP and MoS2. As
demonstrated by the transfer curves in Fig. 4c, thin-film
BP and MoS2 exhibit p-type and n-type characteristics,
respectively. The weak gate tuneability of the BP con-
ductance can be attributed to the larger thickness of
~60 nm, which will screen the gate-field effect. The linear
drain–source current–voltage curves (Ids− Vds) indicate
that ohmic contacts are achieved between the metal
electrodes (Cr/Au 5/60 nm) and 2D flakes (see Supple-
mentary Fig. 9).
The Ids−Vds characterization of the BP–MoS2 hetero-

junction diode at room temperature is shown in Fig. 4d.
Under a negative Vds, band-to-band tunneling of charge
carriers from the MoS2 conduction band to the BP
valence band is possible (see Fig. 5a). Hence, a large
current is observed under negative Vds. This band-to-
band tunneling phenomenon has also been observed in
previous studies of BP-ReS2, BP-SnSe2, and BP–MoS2
heterostructures39,47,49. Under a positive Vds, the

conduction band of MoS2 bends downward, and electrons
accumulate near the MoS2 surface, while the valence band
of BP bends upward, and holes accumulate near the BP
surface (see Fig. 5b). Since the barrier height is lowered
for Vds > 0, thermionic electrons from the conduction
band of MoS2 to that of BP are enabled. On the other
hand, holes in BP are confined near the BP surface due to
the larger barrier height (~1 eV). As a result, active elec-
tron and hole recombination will occur in thin-film BP. In
addition, the drain–source current Ids can be further
tuned by the gate voltage Vg. For a positive Vg, the elec-
tron concentrations in MoS2 are higher, leading to a lar-
ger Ids, while the Fermi energy of BP is less affected by Vg

due to the electron screening in MoS2.
The EL spectra of the BP–MoS2 heterojunction diode at

80 K and 300 K are shown in Fig. 5c. At 80 K, the EL
spectrum is maximized at a wavelength of 4.09 μm.
Importantly, the EL still persists at room temperature.
The abnormal blueshift of the EL spectra at higher tem-
peratures can be attributed to the temperature-induced
strain effect in BP, consistent with previous observations
of temperature-dependent PL spectra of thin-film BP8.
The intensity of the EL spectra shows a good linear
relation with the injected current, as shown in Fig. 5d.
Similar to the PL spectra of BP, the EL spectra also show
highly anisotropic characteristics. The EL intensity
reaches the maximum (minimum) value when the
detection direction is along the armchair axis (zigzag-axis)
of BP. The EL intensity ratio between the armchair axis
and zigzag-axis is over 7 (see Fig. 5e).

Discussion
In summary, we have shown that BP–TMDC hetero-

structures (BP–WSe2 and BP–MoS2) are promising can-
didates for MIR light-emission applications. For the
BP–WSe2 heterostructures, a type-I band alignment is
formed, and a large enhancement of the PL intensities in
the MIR region is observed due to the efficient energy
transfer from WSe2 to BP. In addition, the PL of the
BP–WSe2 heterostructures also shows strong polarization
and thickness dependences. For the BP–MoS2 hetero-
structures, the type-II band alignment enables the for-
mation of a PN heterojunction at the interface. Based on
this heterostructure, an MIR LED has been further rea-
lized at room temperature, which fills a gap in the
research field of 2D-material-based LEDs.

Materials and methods
Theoretical method
Density functional theory (DFT) calculations were per-

formed using the generalized gradient approximation
(GGA) of Perdew–Burke–Ernzerhof (PBE) as imple-
mented in the Vienna Ab initio Simulation Package
(VASP). The hybrid Heyd−Scuseria−Ernzerhof (HSE06)
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hence decrease the electron–hole recombination effi-
ciency. As a result, the enhancement factor is reduced for
thicker BP flakes. We also plot the MIR PL peak position
of the BP–WSe2 heterostructures as a function of BP
thickness and temperature, and the results are in good
agreement with previous reports on thin-film BP8 (see
Supplementary Figs. 7 and 8).
The highly anisotropic MIR light emission is still pre-

served in the BP–WSe2 heterostructures, as demonstrated
by the polarization-resolved PL spectra shown in Fig. 3d.
Here, the laser-excitation direction is fixed along the
armchair axis of BP, and the detection angle θ is the
intersection angle between the detection direction and
the armchair axis of BP.

Mid-infrared electroluminescence in BP–MoS2
heterojunction diodes
In contrast to the BP–WSe2 heterostructure, the

BP–MoS2 heterostructure forms a type-II band alignment
according to previous experimental observations36,37. In
addition, thin-film BP and MoS2 always show p-type and
n-type semiconducting characteristics, respectively, due
to the presence of defects1,2,39,48. As a result, a PN het-
erojunction is naturally formed at the BP–MoS2 interface,
and a diode can be built from this heterostructure.
Through tuning of the source–drain voltage, the transfer
of electrons from the MoS2 conduction band to the BP
conduction band is possible, enabling electrically driven
MIR light emission in BP.
Figure 4a, b shows a schematic and optical images of a

BP–MoS2 heterojunction diode, respectively. The thick-
ness of the BP flake is ~60 nm, as determined by AFM (see
Supplementary Fig. 2). We chose 7-nm-thick MoS2
instead of a monolayer, taking advantage of the higher
carrier mobility in thin-film MoS2

32. We first character-
ized the transport properties of thin-film BP and MoS2. As
demonstrated by the transfer curves in Fig. 4c, thin-film
BP and MoS2 exhibit p-type and n-type characteristics,
respectively. The weak gate tuneability of the BP con-
ductance can be attributed to the larger thickness of
~60 nm, which will screen the gate-field effect. The linear
drain–source current–voltage curves (Ids− Vds) indicate
that ohmic contacts are achieved between the metal
electrodes (Cr/Au 5/60 nm) and 2D flakes (see Supple-
mentary Fig. 9).
The Ids−Vds characterization of the BP–MoS2 hetero-

junction diode at room temperature is shown in Fig. 4d.
Under a negative Vds, band-to-band tunneling of charge
carriers from the MoS2 conduction band to the BP
valence band is possible (see Fig. 5a). Hence, a large
current is observed under negative Vds. This band-to-
band tunneling phenomenon has also been observed in
previous studies of BP-ReS2, BP-SnSe2, and BP–MoS2
heterostructures39,47,49. Under a positive Vds, the

conduction band of MoS2 bends downward, and electrons
accumulate near the MoS2 surface, while the valence band
of BP bends upward, and holes accumulate near the BP
surface (see Fig. 5b). Since the barrier height is lowered
for Vds > 0, thermionic electrons from the conduction
band of MoS2 to that of BP are enabled. On the other
hand, holes in BP are confined near the BP surface due to
the larger barrier height (~1 eV). As a result, active elec-
tron and hole recombination will occur in thin-film BP. In
addition, the drain–source current Ids can be further
tuned by the gate voltage Vg. For a positive Vg, the elec-
tron concentrations in MoS2 are higher, leading to a lar-
ger Ids, while the Fermi energy of BP is less affected by Vg

due to the electron screening in MoS2.
The EL spectra of the BP–MoS2 heterojunction diode at

80 K and 300 K are shown in Fig. 5c. At 80 K, the EL
spectrum is maximized at a wavelength of 4.09 μm.
Importantly, the EL still persists at room temperature.
The abnormal blueshift of the EL spectra at higher tem-
peratures can be attributed to the temperature-induced
strain effect in BP, consistent with previous observations
of temperature-dependent PL spectra of thin-film BP8.
The intensity of the EL spectra shows a good linear
relation with the injected current, as shown in Fig. 5d.
Similar to the PL spectra of BP, the EL spectra also show
highly anisotropic characteristics. The EL intensity
reaches the maximum (minimum) value when the
detection direction is along the armchair axis (zigzag-axis)
of BP. The EL intensity ratio between the armchair axis
and zigzag-axis is over 7 (see Fig. 5e).

Discussion
In summary, we have shown that BP–TMDC hetero-

structures (BP–WSe2 and BP–MoS2) are promising can-
didates for MIR light-emission applications. For the
BP–WSe2 heterostructures, a type-I band alignment is
formed, and a large enhancement of the PL intensities in
the MIR region is observed due to the efficient energy
transfer from WSe2 to BP. In addition, the PL of the
BP–WSe2 heterostructures also shows strong polarization
and thickness dependences. For the BP–MoS2 hetero-
structures, the type-II band alignment enables the for-
mation of a PN heterojunction at the interface. Based on
this heterostructure, an MIR LED has been further rea-
lized at room temperature, which fills a gap in the
research field of 2D-material-based LEDs.

Materials and methods
Theoretical method
Density functional theory (DFT) calculations were per-

formed using the generalized gradient approximation
(GGA) of Perdew–Burke–Ernzerhof (PBE) as imple-
mented in the Vienna Ab initio Simulation Package
(VASP). The hybrid Heyd−Scuseria−Ernzerhof (HSE06)

Zong et al. Light: Science & Applications ����������(2020)�9:114� Page 5 of 8

Vg

Vg =–20V
Vg =0V
Vg =20V

Vg =40V

Vds

I d
s 
(µ

A
)

I d
s 
(µ

A
)

Vg (V) Vds (V)

102

20

10

0

–10

–20

–30

100

10–2

10–4

10–6

–80 –60 –40

MoS2

BP

–20 –4 –2 0 2 40 20 40 60

a b

c d

Fig. 4 Configuration and electrical characterization of the BP–MoS2 heterojunction diode. a, b Schematic (a) and optical (b) images of the
BP–MoS2 heterojunction diode. The scale bar is 10 μm. MoS2 and BP flakes are enclosed by blue and orange dashed lines, respectively. c Transfer
curves of thin-film MoS2 (blue line) and BP (orange line) at source–drain voltage Vds= 0.5 V at room temperature. d Source–drain current Ids as a
function of Vds at various gate voltages Vg for the BP–MoS2 heterojunction diode at room temperature

MoS2

BP

MoS2

BP

Vds<0, Vg=0 Vds>0, Vg>0a b

3
2.0

1.2
90 75

60

45

30

15

0

0.8

0.4

0.0

1.6

1.2

0.8

0.4

300K
80K

2

1

0
200 250 300 350 400 450 2 4 6 8 10

E
L 

in
te

ns
ity

 (
a.

u.
)

E
L 

in
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

Energy (meV) Ids (µA)

c d e

Fig. 5 Mid-infrared electroluminescence in the BP–MoS2 heterojunction diode. a, b Schematic band diagram of the BP–MoS2 heterojunction
diode for Vds < 0, Vg= 0 (a) and Vds > 0, Vg > 0 (b). c EL at 80 K, Ids= 8.05 μA (orange line) and at 300 K, Ids= 8.50 μA (blue line). d EL intensity as a
function of source–drain current Ids when Vds > 0. The yellow solid line serves as a guide line. e Polarization-resolved EL emission at 80 K and Ids=
8.05 μA. The solid line is the fitting curve obtained using the equation I= (Imax− Imin) cos
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functional was selected to calculate the band structure
and band alignments of BP–TMDC heterostructures. The
optB88-vdW functional correction was used to describe
the long-range vdWs interaction. A cutoff energy of
400 eV was set for the plane wave expansion. The con-
vergence criterion of energy was set to 10−6 eV, and that
of the force on each atom was less than 0.01 eV Å−1. The
vacuum layer height along the z direction was set to 15 Å
to avoid interactions between two adjacent images.
Monkhorst–Pack k-point grids of 12 × 12 × 1 and 10 ×
12 × 1 were used in the first Brillouin zone for WSe2 and
BP, respectively.

Sample preparation
TMDC flakes were prepared on a 285-nm-SiO2/Si sub-

strate with the standard mechanical exfoliation method in
an atmospheric environment. Meanwhile, thin-film BP
was mechanically exfoliated from bulk BP crystals onto a
PDMS/glass substrate. BP was then overlaid onto the
WSe2 flake by the PDMS-assisted dry transfer technique
under an optical microscope in a glovebox44. The het-
erostructure samples were further heated at a temperature
of 200 °C for 10min in the glovebox to increase the vdWs
interactions between BP and the TMDC flakes. To prevent
oxidation and photodegradation50, all processes involving
BP were performed in a nitrogen-filled glovebox.

Optical characterizations
For visible PL measurements, the samples were placed

in a vacuum chamber. PL and Raman spectroscopies were
performed in a confocal HORIBA LabRAM system
equipped with 600 grooves per millimeter gratings.
Related measurements were carried out at room tem-
perature using a ×50 objective, and the incident laser was
532 nm with a power fixed at 4 μW. Due to the glass layer
between the objective lens and the sample, the diameter of
the laser spot focused on the sample was 2–4 μm. For
MIR PL and EL spectroscopies, samples were placed on a
low-temperature stage coupled with a Bruker FTIR
spectrometer and a Hyperion 2000 microscope. The MIR
PL and EL signals were collected using the lock-in scheme
as reported in previous studies9, which can significantly
reduce the random thermal noise from the environment.
For MIR PL measurement, a 533-nm incident laser was
chopped at a frequency of 10 kHz, and the laser spot size
on the sample was ~15 μm. The incident power was fixed
at 20 μWμm−2. A Stanford Research SR830 was used to
lock the frequency and coupled to the FTIR spectrometer.
For MIR EL measurement, a sinusoidal voltage with a
frequency of 1 kHz and a peak-to-peak voltage of 30 V
was applied to the gate of the BP–MoS2 heterojunction
diode. As a result, the EL spectra were modulated to an
AC signal, and random thermal noise could be filtered by
the lock-in amplifier. To reduce the effect of CO2

absorptions at an MIR wavelength of 4.3 μm, the system
was purged with N2 gas for 1 h before PL and EL mea-
surements (see Supplementary Fig. 10).
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functional was selected to calculate the band structure
and band alignments of BP–TMDC heterostructures. The
optB88-vdW functional correction was used to describe
the long-range vdWs interaction. A cutoff energy of
400 eV was set for the plane wave expansion. The con-
vergence criterion of energy was set to 10−6 eV, and that
of the force on each atom was less than 0.01 eV Å−1. The
vacuum layer height along the z direction was set to 15 Å
to avoid interactions between two adjacent images.
Monkhorst–Pack k-point grids of 12 × 12 × 1 and 10 ×
12 × 1 were used in the first Brillouin zone for WSe2 and
BP, respectively.

Sample preparation
TMDC flakes were prepared on a 285-nm-SiO2/Si sub-

strate with the standard mechanical exfoliation method in
an atmospheric environment. Meanwhile, thin-film BP
was mechanically exfoliated from bulk BP crystals onto a
PDMS/glass substrate. BP was then overlaid onto the
WSe2 flake by the PDMS-assisted dry transfer technique
under an optical microscope in a glovebox44. The het-
erostructure samples were further heated at a temperature
of 200 °C for 10min in the glovebox to increase the vdWs
interactions between BP and the TMDC flakes. To prevent
oxidation and photodegradation50, all processes involving
BP were performed in a nitrogen-filled glovebox.

Optical characterizations
For visible PL measurements, the samples were placed

in a vacuum chamber. PL and Raman spectroscopies were
performed in a confocal HORIBA LabRAM system
equipped with 600 grooves per millimeter gratings.
Related measurements were carried out at room tem-
perature using a ×50 objective, and the incident laser was
532 nm with a power fixed at 4 μW. Due to the glass layer
between the objective lens and the sample, the diameter of
the laser spot focused on the sample was 2–4 μm. For
MIR PL and EL spectroscopies, samples were placed on a
low-temperature stage coupled with a Bruker FTIR
spectrometer and a Hyperion 2000 microscope. The MIR
PL and EL signals were collected using the lock-in scheme
as reported in previous studies9, which can significantly
reduce the random thermal noise from the environment.
For MIR PL measurement, a 533-nm incident laser was
chopped at a frequency of 10 kHz, and the laser spot size
on the sample was ~15 μm. The incident power was fixed
at 20 μWμm−2. A Stanford Research SR830 was used to
lock the frequency and coupled to the FTIR spectrometer.
For MIR EL measurement, a sinusoidal voltage with a
frequency of 1 kHz and a peak-to-peak voltage of 30 V
was applied to the gate of the BP–MoS2 heterojunction
diode. As a result, the EL spectra were modulated to an
AC signal, and random thermal noise could be filtered by
the lock-in amplifier. To reduce the effect of CO2

absorptions at an MIR wavelength of 4.3 μm, the system
was purged with N2 gas for 1 h before PL and EL mea-
surements (see Supplementary Fig. 10).
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