[1] Kaindl, R. A. et al. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature 423, 734-738 (2003). doi: 10.1038/nature01676
[2] Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72-74 (2007). doi: 10.1038/nature06119
[3] Han, P. Y. & Zhang, X. C. Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol. 12, 1747-1756 (2001). doi: 10.1088/0957-0233/12/11/301
[4] Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 1, 97-105 (2007). doi: 10.1038/nphoton.2007.3
[5] Kleine-Ostmann, T. & Nagatsuma, T. A review on terahertz communications research. J. Infrared, Millim., Terahertz Waves 32, 143-171 (2011). doi: 10.1007/s10762-010-9758-1
[6] Feurer, T., Vaughan, J. C. & Nelson, K. A. Spatiotemporal coherent control of lattice vibrational waves. Science 299, 374-377 (2003). doi: 10.1126/science.1078726
[7] Hunsche, S. et al. THz near-field imaging. Opt. Commun. 150, 22-26 (1998). doi: 10.1016/S0030-4018(98)00044-3
[8] Bitzer, A., Ortner, A. & Walther, M. Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas. Appl. Opt. 49, E1-E6 (2010). doi: 10.1364/AO.49.0000E1
[9] Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photonics 8, 841-845 (2014). doi: 10.1038/nphoton.2014.225
[10] Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 7, 620-625 (2013). doi: 10.1038/nphoton.2013.151
[11] Ma, Y. J. et al. Broadband terahertz generation and detection at 10 nm scale. Nano. Lett. 13, 2884-2888 (2013). doi: 10.1021/nl401219v
[12] Cen, C. et al. Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7, 298-302 (2008). doi: 10.1038/nmat2136
[13] Jnawali, G. et al. Photoconductive response of a single Au nanorod coupled to LaAlO3/SrTiO3 nanowires. Appl. Phys. Lett. 106, 211101 (2015). doi: 10.1063/1.4921750
[14] Thiel, S. et al. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942-1945 (2006). doi: 10.1126/science.1131091
[15] Bi, F. et al. "Water-cycle" mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 97, 173110 (2010). doi: 10.1063/1.3506509
[16] Brown, K. A. et al. Giant conductivity switching of LaAlO3/SrTiO3 heterointerfaces governed by surface protonation. Nat. Commun. 7, 10681 (2016). doi: 10.1038/ncomms10681
[17] Irvin, P. et al. Rewritable nanoscale oxide photodetector. Nat. Photonics 4, 849-852 (2010). doi: 10.1038/nphoton.2010.238
[18] Feng, T. Anomalous photoelectronic processes in SrTiO3. Phys. Rev. B 25, 627-642 (1982). doi: 10.1103/PhysRevB.25.627
[19] Kanemitsu, Y. & Yamada, Y. Light emission from SrTiO3. Phys. Status Solidi (b) 248, 416-421 (2011). doi: 10.1002/pssb.201000643
[20] Yamakata, A., Vequizo, J. J. M. & Kawaguchi, M. Behavior and energy state of photogenerated charge carriers in single-crystalline and polycrystalline powder SrTiO3 studied by time-resolved absorption spectroscopy in the visible to mid-infrared region. J. Phys. Chem. C. 119, 1880-1885 (2015). doi: 10.1021/jp510647b
[21] Günter, T. et al. Spatial inhomogeneities at the LaAlO3/SrTiO3 interface: evidence from second harmonic generation. Phys. Rev. B 86, 235418 (2012). doi: 10.1103/PhysRevB.86.235418
[22] Rubano, A. et al. Electronic states at polar/nonpolar interfaces grown on SrTiO3 studied by optical second harmonic generation. Phys. Rev. B 88, 245434 (2013). doi: 10.1103/PhysRevB.88.245434
[23] Nakamura, R. & Kanematsu, Y. Femtosecond spectral snapshots based on electronic optical Kerr effect. Rev. Sci. Instrum. 75, 636-644 (2004). doi: 10.1063/1.1646739
[24] Casalbuoni, S. et al. Ultrabroadband terahertz source and beamline based on coherent transition radiation. Phys. Rev. Spec. Top. - Accel. Beams 12, 030705 (2009). doi: 10.1103/PhysRevSTAB.12.030705
[25] Huber, R. et al. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76, 3191-3193 (2000). doi: 10.1063/1.126625
[26] Cen, C. et al. Oxide nanoelectronics on demand. Science 323, 1026-1030 (2009). doi: 10.1126/science.1168294
[27] Bark, C. W. et al. Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain. Proc. Natl Acad. Sci. USA 108, 4720-4724 (2011). doi: 10.1073/pnas.1014849108