[1] Sibson, P. et al. Integrated silicon photonics for high-speed quantum key distribution. Optica 4, 172–177 (2017). doi: 10.1364/OPTICA.4.000172
[2] Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 10, 371–379 (2016). doi: 10.1038/nphoton.2016.65
[3] Harter, T. et al. Wireless multi-subcarrier THz communications using mixing in a photoconductor for coherent reception. in Proceedings of 2017 IEEE Photonics Conference. (IEEE, Orlando, 2017).
[4] Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018). doi: 10.1126/science.aao3924
[5] Wang, J. W. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018). doi: 10.1126/science.aar7053
[6] Münzberg, J. et al. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity. Optica 5, 658–665 (2018). doi: 10.1364/OPTICA.5.000658
[7] Hatori, N. et al. A hybrid integrated light source on a silicon platform using a trident spot-size converter. J. Lightwave Technol. 32, 1329–1336 (2014). doi: 10.1109/JLT.2014.2304305
[8] Snyder, B., Corbett, B. & O'Brien, P. Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit. J. Lightwave Technol. 31, 3934–3942 (2013). doi: 10.1109/JLT.2013.2276740
[9] O'Brien, P. et al. in Silicon Photonics Ⅲ: Systems and Applications (eds Pavesi, L. & Lockwood, D. J.) 217–236 (Springer, Berlin, 2016).
[10] Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016). doi: 10.3390/app6120426
[11] van der Tol, J. J. G. M. et al. InP-based photonic circuits: comparison of monolithic integration techniques. Prog. Quantum Electron. 34, 135–172 (2010). doi: 10.1016/j.pquantelec.2010.02.001
[12] Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349–354 (2018). doi: 10.1038/s41586-018-0028-z
[13] Mordor Intelligence. Global Hybrid Photonic Integrated Circuit Market - Analysis, Growth, Trends and Forecast 2018-2023. (Mordor Intelligence, 2018).
[14] Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light. Sci. Appl. 5, e16133 (2016). doi: 10.1038/lsa.2016.133
[15] Lindenmann, N. et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol. 33, 755–760 (2015). doi: 10.1109/JLT.2014.2373051
[16] Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20, 17667–17677 (2012). doi: 10.1364/OE.20.017667
[17] Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018). doi: 10.1364/OPTICA.5.000876
[18] Billah, M. R. et al. 8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding. in Proc of 2017 Optical Fiber Communications Conference and Exhibition. (IEEE, Los Angeles, 2017).
[19] Billah, M. R. et al. Four-channel 784 Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators. in Proc 2017 European Conference on Optical Communication (ECOC). (IEEE, Gothenburg, 2017).
[20] Moehrle, M. et al. Ultra-low threshold 1490 nm surface-emitting BH-DFB laser diode with integrated monitor photodiode. in Proc. 22nd International Conference on Indium Phosphide and Related Materials (IPRM). (IEEE, Kagawa, 2010).
[21] Blaicher, M. et al. 3D-printed ultra-broadband highly efficient out-of-plane coupler for photonic integrated circuits. Conference on Lasers and Electro-Optics. Opt. Soc. Am. (2018). https://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2018-STh1A.1.
[22] Telcordia. GR-468-CORE: Reliability assurance for optoelectronic devices. (2004). https://telecom-info.telcordia.com/ido/AUX/GR_468_TOC.i02.pdf.
[23] Moscoso-Mártir, A. et al. Silicon photonics transmitter with SOA and semiconductor mode-locked laser. Sci. Rep. 7, 13857 (2017). doi: 10.1038/s41598-017-14347-3
[24] Chang, F., Onohara, K. & Mizuochi, T. Forward error correction for 100 G transport networks. IEEE Commun. Magazine 48, S48–S55 (2010).
[25] IEEE. 802.3cn-2019 - IEEE Standard for Ethernet - Amendment 4: Physical layers and management parameters for 50 Gb/s, 200 Gb/s, and 400 Gb/s operation over single-mode fiber (IEEE, 2019).
[26] CWDM8 MSA Group. 400 G CWDM8 MSA 2 km optical interface technical specifications revision 1.0. (2017). https://www.cwdm8-msa.org/media/400G-CWDM8-2km-Optical-Interface-Technical-Specifications-r1.0.pdf.
[27] Wolf, S. et al. Silicon-organic hybrid (SOH) mach-zehnder modulators for 100 Gbit/s on-off keying. Sci. Rep. 8, 2598 (2018). doi: 10.1038/s41598-017-19061-8
[28] Zwickel, H. et al. Silicon-organic hybrid (SOH) modulators for intensity-modulation/direct-detection links with line rates of up to 120 Gbit/s. Opt. Express 25, 23784–23800 (2017). doi: 10.1364/OE.25.023784
[29] Koos, C. et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J. Lightwave Technol. 34, 256–268 (2016). doi: 10.1109/JLT.2015.2499763
[30] Kieninger, C. et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica 5, 739–748 (2018). doi: 10.1364/OPTICA.5.000739
[31] Absil, P. P. et al. Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform. in Proc SPIE 9367, Silicon Photonics X. (SPIE, San Francisco, 2015).
[32] Lauermann, M. et al. Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats. Opt. Express 22, 29927–29936 (2014). doi: 10.1364/OE.22.029927
[33] International Telecommunication Union - ITU-T. Forward error correction for high bit-rate DWDM submarine systems. ITU-TG.975.1, (2005). https://www.itu.int/rec/T-REC-G.975.1-200402-I/en.
[34] Andriolli, N. et al. InP monolithically integrated coherent transmitter. Opt. Express 23, 10741–10746 (2015). doi: 10.1364/OE.23.010741
[35] Lange, S. et al. 100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser mach–zehnder modulator. J. Lightwave Technol. 36, 97–102 (2018). doi: 10.1109/JLT.2017.2743211
[36] Jonušauskas, L. et al. Mesoscale laser 3D printing. Opt. Express 27, 15205–15221 (2019). doi: 10.1364/OE.27.015205
[37] Dottermusch, S. et al. Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers. Opt. Lett. 44, 29–32 (2018). doi: 10.1364/OL.44.000029