[1] Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th edn. (Cambridge University Press, Cambridge, 1999).
[2] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014). doi: 10.1038/nmat3839
[3] Hsiao, H. H., Chu, C. H. & Tsai, D. P. Fundamentals and applications of metasurfaces. Small Methods 1, 1600064 (2017). doi: 10.1002/smtd.201600064
[4] Ding, F. et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics 7, 1129–1156 (2018). doi: 10.1515/nanoph-2017-0125
[5] He, Q. et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Optical Mater. 6, 1800415 (2018). doi: 10.1002/adom.201800415
[6] Sun, S. L. et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics 11, 380–479 (2019). doi: 10.1364/AOP.11.000380
[7] Hao, J. M. et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99, 063908 (2007). doi: 10.1103/PhysRevLett.99.063908
[8] Jiang, S. C. et al. Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X 4, 021026 (2014).
[9] Li, L. et al. Plasmonic polarization generator in well-routed beaming. Light: Sci. Appl. 4, e330–e330 (2015).
[10] Rodríguez-Fortuño, F. J. et al. Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna. Laser Photonic Rev. 8, L27–L31 (2014). doi: 10.1002/lpor.201300184
[11] Hao, J. M. et al. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010). doi: 10.1063/1.3442904
[12] Liu, N. et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010). doi: 10.1021/nl9041033
[13] Hao, J. M., Zhou, L. & Qiu, M. Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B 83, 165107 (2011). doi: 10.1103/PhysRevB.83.165107
[14] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[15] Ni, X. J. et al. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012). doi: 10.1126/science.1214686
[16] Sun, S. L. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012). doi: 10.1021/nl3032668
[17] Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012). doi: 10.1038/nmat3292
[18] Huang, L. L. et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Sci. Appl. 2, e70 (2013).
[19] Pors, A. et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light: Sci. Appl. 3, e197 (2014).
[20] Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012). doi: 10.1021/nl302516v
[21] Li, X. et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt. Lett. 37, 4940–4942 (2012). doi: 10.1364/OL.37.004940
[22] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644
[23] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).
[24] Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225–230 (2014). doi: 10.1021/nl403811d
[25] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).
[26] Wang, L. et al. Grayscale transparent metasurface holograms. Optica 3, 1504–1505 (2016). doi: 10.1364/OPTICA.3.001504
[27] Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).
[28] Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett. 16, 5235–5240 (2016). doi: 10.1021/acs.nanolett.6b02326
[29] Deng, Z. L. et al. Diatomic metasurface for vectorial holography. Nano Lett. 18, 2885–2892 (2018). doi: 10.1021/acs.nanolett.8b00047
[30] Deng, Z. L. et al. Facile metagrating holograms with broadband and extreme angle tolerance. Light: Sci. Appl. 7, 78 (2018).
[31] Pfeiffer, C. et al. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys. Rev. Lett. 113, 023902 (2014). doi: 10.1103/PhysRevLett.113.023902
[32] Yang, Y. M. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014). doi: 10.1021/nl4044482
[33] Cui, T. J. et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Sci. Appl. 3, e218 (2014).
[34] Hu, D. J. et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy. ACS Nano 12, 9233–9239 (2018). doi: 10.1021/acsnano.8b03964
[35] Bao, Y. J. et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding. Adv. Funct. Mater. 28, 1805306 (2018). doi: 10.1002/adfm.201805306
[36] Leitis, A. et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 5, eaaw2871 (2019). doi: 10.1126/sciadv.aaw2871
[37] Deng, Z. L. et al. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure. Photonics Res. 6, 443–450 (2018). doi: 10.1364/PRJ.6.000443
[38] Cordaro, A. et al. High-index dielectric metasurfaces performing mathematical operations. Nano Lett. 19, 8418–8423 (2019). doi: 10.1021/acs.nanolett.9b02477
[39] Kwon, H. et al. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett. 121, 173004 (2018). doi: 10.1103/PhysRevLett.121.173004
[40] Qiu, M. et al. Angular dispersions in terahertz metasurfaces: physics and applications. Phys. Rev. Appl. 9, 054050 (2018). doi: 10.1103/PhysRevApplied.9.054050
[41] Minovich, A. et al. Tilted response of fishnet metamaterials at near-infrared optical wavelengths. Phys. Rev. B 81, 115109 (2010). doi: 10.1103/PhysRevB.81.115109
[42] Xi, B. et al. Theory of coupling in dispersive photonic systems. Phys. Rev. B 83, 165115 (2011). doi: 10.1103/PhysRevB.83.165115
[43] Lalanne, P. & Lemercier-Lalanne, D. On the effective medium theory of subwavelength periodic structures. J. Mod. Opt. 43, 2063–2085 (1996). doi: 10.1080/09500349608232871
[44] Smith, D. R. et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002). doi: 10.1103/PhysRevB.65.195104
[45] Qu, C. et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys. Rev. Lett. 115, 235503 (2015). doi: 10.1103/PhysRevLett.115.235503
[46] Fan, S. H., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Optical Soc. Am. A 20, 569–572 (2003). doi: 10.1364/JOSAA.20.000569
[47] Suh, W., Wang, Z. & Fan, S. H. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004). doi: 10.1109/JQE.2004.834773
[48] Humphrey, A. D. & Barnes, W. L. Plasmonic surface lattice resonances on arrays of different lattice symmetry. Phys. Rev. B 90, 075404 (2014). doi: 10.1103/PhysRevB.90.075404
[49] Kravets, V. G. et al. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev. 118, 5912–5951 (2018). doi: 10.1021/acs.chemrev.8b00243
[50] Jackson, J. D. Classical Electrodynamics. (John Wiley & Sons, 1999).