[1] Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). doi: 10.1103/PhysRevLett.116.061102
[2] Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). doi: 10.1103/PhysRevLett.119.161101
[3] Abbott, B. P. et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017). doi: 10.1103/PhysRevLett.118.221101
[4] Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017). doi: 10.3847/2041-8213/aa91c9
[5] Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017). doi: 10.3847/2041-8213/aa920c
[6] The LIGO Scientific Collaboration and the Virgo Collaboration et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85-88 (2017). doi: 10.1038/nature24471
[7] The LIGO Scientific Collaboration. Advanced LIGO. Classical Quantum Gravity 32, 074001 (2015). doi: 10.1088/0264-9381/32/7/074001
[8] Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical Quantum Gravity 32, 024001 (2015). doi: 10.1088/0264-9381/32/2/024001
[9] Smith, J. R. et al. Commissioning, characterization and operation of the dual-recycled GEO 600. Classical Quantum Gravity 21, S1737-S1745 (2004). doi: 10.1088/0264-9381/21/20/016
[10] Aso, Y. et al. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D 88, 043007 (2013). doi: 10.1103/PhysRevD.88.043007
[11] Martynov, D. V. et al. Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys. Rev. D 93, 112004 (2016). doi: 10.1103/PhysRevD.93.112004
[12] Caves, C. M. Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75-79 (1980). doi: 10.1103/PhysRevLett.45.75
[13] Braginsky, V. B. & Minakova, I. I. Influence of the small displacement measurements on the dynamical properties of mechanical oscillating systems. Moscow Univ. Phys. Bull. 1, 83-85 (1964).
[14] Tsang, M., Wiseman, H. M. & Caves, C. M. Fundamental quantum limit to waveform estimation. Phys. Rev. Lett. 106, 090401 (2011). doi: 10.1103/PhysRevLett.106.090401
[15] Miao, H. et al. Towards the fundamental quantum limit of linear measurements of classical signals. Phys. Rev. Lett. 119, 050801 (2017). doi: 10.1103/PhysRevLett.119.050801
[16] Braginsky, V. B. et al. Energetic quantum limit in large-scale interferometers. AIP Conf. Proc. 523, 180-189 (2000). doi: 10.1063/1.1291855
[17] Kimble, H. J. et al. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001). doi: 10.1103/PhysRevD.65.022002
[18] Yuen, H. P. Two-photon coherent states of the radiation field. Phys. Rev. A 13, 2226-2243 (1976). doi: 10.1103/PhysRevA.13.2226
[19] Schnabel, R. Squeezed states of light and their applications in laser interferometers. Phys. Rep. 684, 1-51 (2017). doi: 10.1016/j.physrep.2017.04.001
[20] The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962-965 (2011). doi: 10.1038/nphys2083
[21] Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613-619 (2013). doi: 10.1038/nphoton.2013.177
[22] Grote, H. et al. First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett. 110, 181101 (2013). doi: 10.1103/PhysRevLett.110.181101
[23] Drever, R. W. P. Interferometric detectors for gravitational radiation. Lecture Notes Phys. 124, 321-338 (1983).
[24] Meers, B. J. Recycling in laser-interferometric gravitational-wave detectors. Phys. Rev. D 38, 2317-2326 (1988).
[25] Mizuno, J. Comparison of Optical Configurations for Laser-interferometric Gravitational-wave Detectors. PhD thesis. Albert-Einstein-Institut Hannover, Hannover (1995).
[26] Faber, J. A. & Rasio, F. A. Binary neutron star mergers. Living Rev. Relat. 15, 8 (2012). doi: 10.12942/lrr-2012-8
[27] Baiotti, L. & Rezzolla, L. Binary neutron star mergers: a review of Einstein's richest laboratory. Rep. Progress Phys. 80, 096901 (2017). doi: 10.1088/1361-6633/aa67bb
[28] Conklin, R. S., Holdom, B. & Ren, J. Gravitational wave echoes through new windows. Phys. Rev. D 98, 44021 (2017).
[29] Wicht, A. et al. White-light cavities, atomic phase coherence, and gravitational wave detectors. Optics Commun. 134, 431-439 (1997). doi: 10.1016/S0030-4018(96)00579-2
[30] Pati, G. S. et al. Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor. Phys. Rev. Lett. 99, 133601 (2007). doi: 10.1103/PhysRevLett.99.133601
[31] Yum, H. N. et al. Demonstration of white light cavity effect using stimulated Brillouin scattering in a fiber loop. J. Lightwave Technol. 31, 3865-3872 (2013). doi: 10.1109/JLT.2013.2288326
[32] Zhou, M. C., Zhou, Z. F. & Shahriar, S. M. Quantum noise limits in white-light-cavity-enhanced gravitational wave detectors. Phys. Rev. D 92, 082002 (2015). doi: 10.1103/PhysRevD.92.082002
[33] Ma, Y. et al. Quantum noise of a white-light cavity using a double-pumped gain medium. Phys. Rev. A 92, 023807 (2015). doi: 10.1103/PhysRevA.92.023807
[34] Qin, J. et al. Linear negative dispersion with a gain doublet via optomechanical interactions. Optics Lett. 40, 2337-2340 (2015). doi: 10.1364/OL.40.002337
[35] Miao, H. et al. Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters. Phys. Rev. Lett. 115, 211104 (2015). doi: 10.1103/PhysRevLett.115.211104
[36] Chelkowski, S. et al. Experimental characterization of frequency-dependent squeezed light. Phys. Rev. A 71, 013806 (2005). doi: 10.1103/PhysRevA.71.013806
[37] Danilishin, S. L. & Khalili, F. Y. Quantum measurement theory in gravitational-wave detectors. Living Rev. Relat. 15, 5 (2012). doi: 10.12942/lrr-2012-5
[38] Miao, H. et al. Quantum limits of interferometer topologies for gravitational radiation detection. Classic Quantum Gravity 31, 165010 (2014). doi: 10.1088/0264-9381/31/16/165010
[39] Korobko, M. et al. Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation. Phys. Rev. Lett. 118, 143601 (2017). doi: 10.1103/PhysRevLett.118.143601
[40] Rehbein, H. et al. Optical transfer functions of Kerr nonlinear cavities and interferometers. Phys. Rev. Lett. 95, 193001 (2005). doi: 10.1103/PhysRevLett.95.193001
[41] Somiya, K. et al. Parametric signal amplification to create a stiff optical bar. Phys. Lett. A 380, 521-524 (2016). doi: 10.1016/j.physleta.2015.11.010
[42] Korobko, M., Khalili, F. Y. & Schnabel, R. Engineering the optical spring via intra-cavity optical-parametric amplification. Phys. Lett. A 382, 2238-2244 (2018). doi: 10.1016/j.physleta.2017.08.008
[43] Buonanno, A. & Chen, Y. Scaling law in signal recycled laser-interferometer gravitational-wave detectors. Phys. Rev. D 67, 062002 (2003). doi: 10.1103/PhysRevD.67.062002
[44] Martynov, D. et al. Exploring the sensitivity of gravitational wave detectors to neutron star physics. arXiv 1901.03885 (2019).
[45] Grynberg, G. et al. Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light. (Cambridge University Press, Cambridge, 2010).
[46] Oelker, E. et al. Squeezed light for advanced gravitational wave detectors and beyond. Optics Express 22, 21106-21121 (2014). doi: 10.1364/OE.22.021106
[47] Schreiber, E. Gravitational-Wave Detection Beyond the Quantum Shot-noise Limit: the Integration of Squeezed Light in GEO 600. PhD thesis. Leibniz Universität Hannover, Hannover (2018).
[48] Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693-1708 (1981). doi: 10.1103/PhysRevD.23.1693
[49] Knyazev, E. et al. Quantum tomography enhanced through parametric amplification. New J. Phys. 20, 013005 (2018). doi: 10.1088/1367-2630/aa99b4
[50] Corbitt, T., Mavalvala, N. & Whitcomb, S. Optical cavities as amplitude filters for squeezed fields. Phys. Rev. D 70, 22002 (2004). doi: 10.1103/PhysRevD.70.022002
[51] Miao, H., Yang, H. & Martynov, D. Towards the design of gravitational-wave detectors for probing neutron-star physics. Phys. Rev. D 98, 044044 (2018). doi: 10.1103/PhysRevD.98.044044
[52] Bauswein, A. & Janka, H.-T. Measuring neutron-star properties via gravitational waves from neutron-star mergers. Phys. Rev. Lett. 108, 011101 (2012). doi: 10.1103/PhysRevLett.108.011101
[53] Yang, H. et al. Evolution of highly eccentric binary neutron stars including tidal effects. Phys. Rev. D 98, 044007 (2018). doi: 10.1103/PhysRevD.98.044007
[54] Szczykulska, M., Baumgratz, T. & Datta, A. Multi-parameter quantum metrology. Adv. Phys. X 1, 621-639 (2016).
[55] Li, B. B. et al. Quantum enhanced optomechanical magnetometry. Optica 5, 850-856 (2018). doi: 10.1364/OPTICA.5.000850
[56] Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Modern Phys. 86, 1391-1452 (2014). doi: 10.1103/RevModPhys.86.1391
[57] Khalili, F. Y. & Danilishin, S. L. Quantum optomechanics. Progress Optics 61, 113-236 (2016). doi: 10.1016/bs.po.2015.09.001
[58] Caves, C. M. & Schumaker, B. L. New formalism for two-photon quantum optics. Ⅰ. Quadrature phases and squeezed states. Phys. Rev. A 31, 3068-3111 (1985). doi: 10.1103/PhysRevA.31.3068
[59] Schumaker, B. L. & Caves, C. M. New formalism for two-photon quantum optics. Ⅱ. Mathematical foundation and compact notation. Phys. Rev. A 31, 3093-3111 (1985). doi: 10.1103/PhysRevA.31.3093