[1] Bomzon, Z. et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141-1143 (2002). doi: 10.1364/OL.27.001141
[2] Marrucci, L., Manzo, C. & Paparo, D. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation. Appl. Phys. Lett. 88, 221102 (2006). doi: 10.1063/1.2207993
[3] Kim, J. et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica. 2, 958-964 (2015). doi: 10.1364/OPTICA.2.000958
[4] Miskiewicz, M. N. & Escuti, M. J. Direct-writing of complex liquid crystal patterns. Opt. Express 22, 12691-12706 (2014). doi: 10.1364/OE.22.012691
[5] Genevet, P. & Capasso, F. Holographic optical metasurfaces: a review of current progress. Rep. Prog. Phys. 78, 024401 (2015). doi: 10.1088/0034-4885/78/2/024401
[6] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308-312 (2015). doi: 10.1038/nnano.2015.2
[7] Wang, X. W. et al. Dielectric geometric phase optical elements fabricated by femtosecond direct laser writing in photoresists. Appl. Phys. Lett. 110, 181101 (2017). doi: 10.1063/1.4982602
[8] Zhan, Q. W. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics 1, 1-57 (2009). doi: 10.1364/AOP.1.000001
[9] D'Ambrosio, V. et al. Arbitrary, direct and deterministic manipulation of vector beams via electrically-tuned q-plates. Sci. Rep. 5, 7840 (2015). doi: 10.1038/srep07840
[10] Dorn, R., Quabis, S. & Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003). doi: 10.1103/PhysRevLett.91.233901
[11] Hnatovsky, C. et al. Revealing local field structure of focused ultrashort pulses. Phys. Rev. Lett. 106, 123901 (2011). doi: 10.1103/PhysRevLett.106.123901
[12] Karedla, N. et al. Simultaneous measurement of the three-dimensional orientation of excitation and emission dipoles. Phys. Rev. Lett. 115, 173002 (2015). doi: 10.1103/PhysRevLett.115.173002
[13] Salamin, Y. I., Harman, Z. & Keitel, C. H. Direct high-power laser acceleration of ions for medical applications. Phys. Rev. Lett. 100, 155004 (2008). doi: 10.1103/PhysRevLett.100.155004
[14] Guclu, C., Veysi, M. & Capolino, F. Photoinduced magnetic nanoprobe excited by an azimuthally polarized vector beam. ACS Photonics 3, 2049-2058 (2016). doi: 10.1021/acsphotonics.6b00329
[15] Hernández-García, C. et al. Extreme ultraviolet vector beams driven by infrared lasers. Optica. 4, 520-526 (2017). doi: 10.1364/OPTICA.4.000520
[16] Parigi, V. et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun. 6, 7706 (2015). doi: 10.1038/ncomms8706
[17] Milione, G. et al. Higher order Pancharatnam-Berry phase and the angular momentum of light. Phys. Rev. Lett. 108, 190401 (2012). doi: 10.1103/PhysRevLett.108.190401
[18] Della Valle, G., Osellame, R. & Laporta, P. Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A 11, 013001 (2009). doi: 10.1088/1464-4258/11/1/013001
[19] Sugioka, K. & Cheng, Y. Ultrafast lasers—reliable tools for advanced materials processing. Light: Sci. Appl. 3, e149 (2014).
[20] Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219-225 (2008). doi: 10.1038/nphoton.2008.47
[21] Meany, T. et al. Laser written circuits for quantum photonics. Laser Photonics Rev. 9, 363-384 (2015). doi: 10.1002/lpor.201500061
[22] Sotillo, B. et al. Diamond photonics platform enabled by femtosecond laser writing. Sci. Rep. 6, 35566 (2016). doi: 10.1038/srep35566
[23] Beresna, M. et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98, 201101 (2011). doi: 10.1063/1.3590716
[24] Drevinskas, R. & Kazansky, P. G. High-performance geometric phase elements in silica glass. APL Photonics 2, 066104 (2017). doi: 10.1063/1.4984066
[25] Shimotsuma, Y. et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003). doi: 10.1103/PhysRevLett.91.247405
[26] Bricchi, E., Klappauf, B. G. & Kazansky, P. G. Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt. Lett. 29, 119-121 (2004). doi: 10.1364/OL.29.000119
[27] Bhardwaj, V. R. et al. Optically produced arrays of planar nanostructures inside fused silica. Phys. Rev. Lett. 96, 057404 (2006). doi: 10.1103/PhysRevLett.96.057404
[28] Richter, S. et al. Nanogratings in fused silica: formation, control, and applications. J. Laser Appl. 24, 042008 (2012).
[29] Drevinskas, R. et al. Ultrafast laser-induced metasurfaces for geometric phase manipulation. Adv. Opt. Mater. 5, 1600575 (2017). doi: 10.1002/adom.201600575
[30] Hnatovsky, C. et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl. Phys. Lett. 87, 014104 (2005). doi: 10.1063/1.1991991
[31] Liao, Y. et al. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica. 2, 329-334 (2015). doi: 10.1364/OPTICA.2.000329
[32] Brückner, R. Properties and structure of vitreous silica. I. J. Non-Cryst. Solids 5, 123-175 (1970). doi: 10.1016/0022-3093(70)90190-0
[33] Ohfuchi, T. et al. The characteristic of birefringence and optical loss in femtosecond-laser-induced region in terms of nanogratings distribution. J. Laser micro/Nanoen. 12, 217-221 (2017).
[34] Drevinskas, R., Kazansky, P., Cerkauskaite, A. Nanostructured optical element, method for fabrication and uses thereof (2019).
[35] Tsai, T. & Griscom, D. Experimental evidence for excitonic mechanism of defect generation in high-purity silica. Phys. Rev. Lett. 67, 2517-2520 (1991). doi: 10.1103/PhysRevLett.67.2517
[36] Rudenko, A., Colombier, J. P. & Itina, T. E. Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass. Phys. Chem. Chem. Phys. 20, 5887-5899 (2018). doi: 10.1039/C7CP07603G
[37] Canning, J. et al. Anatomy of a femtosecond laser processed silica waveguide [Invited]. Optical Mater. Express 1, 998-1008 (2011). doi: 10.1364/OME.1.000998
[38] Davis, K. M. et al. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729-1731 (1996). doi: 10.1364/OL.21.001729
[39] Bellouard, Y. et al. Stress-state manipulation in fused silica via femtosecond laser irradiation. Optica. 3, 1285-1293 (2016). doi: 10.1364/OPTICA.3.001285
[40] Sihvola, A. H. & Kong, J. A. Effective permittivity of dielectric mixtures. IEEE Trans. Geosci. Remote Sens. 26, 420-429 (1988). doi: 10.1109/36.3045
[41] Cox, A. J., DeWeerd, A. J. & Linden, J. An experiment to measure Mie and Rayleigh total scattering cross sections. Am. J. Phys. 70, 620-625 (2002). doi: 10.1119/1.1466815
[42] Atkins, P. & De Paula, J. Atkins' Physical Chemistry. 10th edn (Oxford University Press, Oxford, 2014).
[43] Lancry, M. et al. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 7, 953-962 (2013). doi: 10.1002/lpor.201300043
[44] El Hamzaoui, H. et al. From porous silica xerogels to bulk optical glasses: the control of densification. Mater. Chem. Phys. 121, 83-88 (2010). doi: 10.1016/j.matchemphys.2009.12.043
[45] Saeta, P. N. & Greene, B. I. Primary relaxation processes at the band edge of SiO2. Phys. Rev. Lett. 70, 3588-3591 (1993). doi: 10.1103/PhysRevLett.70.3588
[46] Skuja, L. et al. Infrared photoluminescence of preexisting or irradiation-induced interstitial oxygen molecules in glassy SiO2 and α-quartz. Phys. Rev. B 58, 14296-14304 (1998). doi: 10.1103/PhysRevB.58.14296
[47] Mishchik, K. et al. Ultrafast laser induced electronic and structural modifications in bulk fused silica. J. Appl. Phys. 114, 133502 (2013).
[48] Devine, R. A. B. & Arndt, J. Defect pair creation through ultraviolet radiation in dense, amorphous SiO2. Phys. Rev. B 42, 2617-2620 (1990). doi: 10.1103/PhysRevB.42.2617
[49] Mermillod-Blondin, A. et al. Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates. Phys. Rev. B 77, 104205 (2008). doi: 10.1103/PhysRevB.77.104205
[50] Zhang, J. Y. et al. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901