[1] Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014). doi: 10.1038/nnano.2014.149
[2] Wang, J. P. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015). doi: 10.1002/adma.201405217
[3] Wang, N. N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016). doi: 10.1038/nphoton.2016.185
[4] Yuan, M. J. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016). doi: 10.1038/nnano.2016.110
[5] Si, J. J. et al. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Res. 10, 1329–1335 (2017). doi: 10.1007/s12274-017-1432-7
[6] Zhang, L. Q. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 8, 15640 (2017). doi: 10.1038/ncomms15640
[7] Xiao, Z. G. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11, 108–115 (2017). doi: 10.1038/nphoton.2016.269
[8] Sun, Y. et al. The formation of perovskite multiple quantum well structures for high performance light-emitting diodes. npj Flex. Electron. 2, 12 (2018). doi: 10.1038/s41528-018-0026-0
[9] Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014). doi: 10.1021/jz5005285
[10] Manser, J. S., Christians, J. A. & Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016). doi: 10.1021/acs.chemrev.6b00136
[11] Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018). doi: 10.1038/s41467-018-03049-7
[12] Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018). doi: 10.1038/s41586-018-0576-2
[13] Lin, K. B. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). doi: 10.1038/s41586-018-0575-3
[14] Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 12, 681–687 (2018). doi: 10.1038/s41566-018-0260-y
[15] Zhao, B. D. et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 783–789 (2018). doi: 10.1038/s41566-018-0283-4
[16] Xu, W. D. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019). doi: 10.1038/s41566-019-0390-x
[17] Adjokatse, S., Fang, H. H. & Loi, M. A. Broadly tunable metal halide perovskites for solid-state light-emission applications. Mater. Today 20, 413–424 (2017). doi: 10.1016/j.mattod.2017.03.021
[18] Liu, X. K. & Gao, F. Organic–inorganic hybrid ruddlesden–popper perovskites: an emerging paradigm for high-performance light-emitting diodes. J. Phys. Chem. Lett. 9, 2251–2258 (2018). doi: 10.1021/acs.jpclett.8b00755
[19] Yang, X. L. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018). doi: 10.1038/s41467-018-02978-7
[20] Chen, Z. M. et al. Recombination dynamics study on nanostructured perovskite light-emitting devices. Adv. Mater. 30, 1801370 (2018). doi: 10.1002/adma.201801370
[21] Yang, M. et al. Reduced efficiency roll-off and enhanced stability in perovskite light-emitting diodes with multiple quantum wells. J. Phys. Chem. Lett. 9, 2038–2042 (2018). doi: 10.1021/acs.jpclett.8b00600
[22] Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946). doi: 10.1103/PhysRev.69.37
[23] Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003). doi: 10.1038/nature01939
[24] Hofmann, S. et al. Top-emitting organic light-emitting diodes. Opt. Express 19, A1250–A1264 (2011). doi: 10.1364/OE.19.0A1250
[25] Schubert, E. F. et al. Highly efficient light-emitting diodes with microcavities. Science 265, 943–945 (1994). doi: 10.1126/science.265.5174.943
[26] Dodabalapur, A. et al. Microcavity effects in organic semiconductors. Appl. Phys. Lett. 64, 2486–2488 (1994). doi: 10.1063/1.111606
[27] Dodabalapur, A. et al. Physics and applications of organic microcavity light emitting diodes. J. Appl. Phys. 80, 6954–6964 (1996). doi: 10.1063/1.363768
[28] Basri, R. & Jacobs, D. W. Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25, 218–233 (2003). doi: 10.1109/TPAMI.2003.1177153
[29] Deppe, D. G. et al. Spontaneous emission from planar microstructures. J. Mod. Opt. 41, 325–344 (1994). doi: 10.1080/09500349414550361
[30] Dai, X. L. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014). doi: 10.1038/nature13829
[31] Redecker, M. et al. High mobility hole transport fluorene‐triarylamine copolymers. Adv. Mater. 11, 241–246 (1999). doi: 10.1002/(SICI)1521-4095(199903)11:3<241::AID-ADMA241>3.0.CO;2-J
[32] Reineke, S. et al. White organic light-emitting diodes: status and perspective. Rev. Mod. Phys. 85, 1245–1293 (2013). doi: 10.1103/RevModPhys.85.1245
[33] Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009). doi: 10.1038/nature08003