[1] Floreano, D. et al. Miniature curved artificial compound eyes. Proc. Natl Acad. Sci. USA 110, 9267-9272, (2013). doi: 10.1073/pnas.1219068110
[2] Chung, T. et al. Mining the smartness of insect ultrastructures for advanced imaging and illumination. Adv. Funct. Mater. 28, 1705912, (2018). doi: 10.1002/adfm.201705912
[3] Raut, H. K. et al. Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting. ACS Nano 9, 1305-1314, (2015). doi: 10.1021/nn5051272
[4] Völkel, R., Eisner, M. & Weible, K. J. Miniaturized imaging systems. Microelectron. Eng. 67-68, 461-472, (2003). doi: 10.1016/S0167-9317(03)00102-3
[5] Duparré, J. W. & Wippermann, F. C. Micro-optical artificial compound eyes. Bioinspir. Biomim. 1, R1-R16, (2006). doi: 10.1088/1748-3182/1/1/R01
[6] Stavenga, D. G. & Hardie, R. C. Facets of Vision (Springer, Berlin, Heidelberg, 1989).
[7] Warrant, E. J. & Nilsson, D. E. Invertebrate Vision. (Cambridge University Press, Cambridge, 2006).
[8] Buschbeck, E., Ehmer, B. & Hoy, R. Chunk versus point sampling: visual imaging in a small insect. Science 286, 1178-1180 (1999). doi: 10.1126/science.286.5442.1178
[9] Maksimovic, S., Layne, J. E. & Buschbeck, E. K. Behavioral evidence for within-eyelet resolution in twisted-winged insects (Strepsiptera). J. Exp. Biol. 210, 2819-2828, (2007). doi: 10.1242/jeb.004697
[10] Keum, D. et al. Xenos peckii vision inspires an ultrathin digital camera. Light Sci. Appl. 7, 80, (2018). doi: 10.1038/s41377-018-0081-2
[11] Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95-99, (2013). doi: 10.1038/nature12083
[12] Nussbaum, P. et al. Design, fabrication and testing of microlens arrays for sensors and microsystems. Pure Appl. Opt. J. Eur. Opt. Soc. A 6, 617-636, (1997). doi: 10.1088/0963-9659/6/6/004
[13] Jeong, K. H., Kim, J. & Lee, L. P. Biologically inspired artificial compound eyes. Science 312, 557-561, (2006). doi: 10.1126/science.1123053
[14] Brückner, A. et al. Artificial neural superposition eye. Opt. Express 15, 11922-11933, (2007). doi: 10.1364/OE.15.011922
[15] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10, 554-560, (2016). doi: 10.1038/nphoton.2016.121
[16] Thiele, S. et al. 3D-printed eagle eye: compound microlens system for foveated imaging. Sci. Adv. 3, e1602655, (2017). doi: 10.1126/sciadv.1602655
[17] Ng, R. et al. Light Field Photography with a Hand-Held Plenoptic Camera. Stanford University Computer Science Technical Reports 02 (2005). http://cn.bing.com/academic/profile?id=91b07568d85e3e2056e7e33d32a4e64c&encoded=0&v=paper_preview&mkt=zh-cn
[18] Mu, Q. C. et al. Multi-species micropatterning of organic materials by liquid droplet array transfer printing. Appl. Phys. Lett. 114, 183702, (2019). doi: 10.1063/1.5091101
[19] Wang, M. et al. A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number. RSC Adv. 5, 35311-35316, (2015). doi: 10.1039/C5RA00957J
[20] Autrum, H. Comparative Physiology and Evolution of Vision in Invertebrates (Springer, Berlin, Heidelberg, 1979).
[21] Keum, D., Jung, H. & Jeong, K. H. Planar emulation of natural compound eyes. Small 8, 2169-2173, (2012). doi: 10.1002/smll.201200107
[22] Stavenga, D. Colour in the eyes of insects. J. Comp. Physiol. A 188, 337-348, (2002). doi: 10.1007/s00359-002-0307-9
[23] Stollberg, K. et al. The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects. Opt. Express 17, 15747-15759, (2009). doi: 10.1364/OE.17.015747
[24] Brückner, A. et al. Thin wafer-level camera lenses inspired by insect compound eyes. Opt. Express 18, 24379-24394, (2010). doi: 10.1364/OE.18.024379
[25] Gassner, C. et al. Compact wide-angle array camera for presence detection. Proc. SPIE 10545, MOEMS and Miniaturized Systems XVⅡ (SPIE, San Francisco, 2018).
[26] Moghimi, M. J. et al. Micro-fresnel-zone-plate array on flexible substrate for large field-of-view and focus scanning. Sci. Rep. 5, 15861 (2015). doi: 10.1038/srep15861
[27] Zhang, H. et al. Development of a low cost high precision three-layer 3D artificial compound eye. Opt. Express 21, 22232-22245, (2013). doi: 10.1364/OE.21.022232
[28] Sajjadi, M. S. M., Vemulapalli, R. & Brown, M. Frame-recurrent video super-resolution. Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. p. 6626-6634 (IEEE, Salt Lake City, 2018).
[29] Mandanici, E. et al. A multi-image super-resolution algorithm applied to thermal imagery. Appl. Geomat. 11, 215-228, (2019). doi: 10.1007/s12518-019-00253-y
[30] Farsiu, S. et al. Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13, 1327-1344, (2004). doi: 10.1109/TIP.2004.834669