[1] Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). doi: 10.1126/science.1125907
[2] Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). doi: 10.1103/PhysRevLett.85.3966
[3] Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. & Linden, S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006). doi: 10.1126/science.1126021
[4] Shalaev, V. M. Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2007). doi: 10.1038/nphoton.2006.49
[5] Mivelle, M., Grosjean, T., Burr, G. W., Fischer, U. C. & Garcia-Parajo, M. F. Strong modification of magnetic dipole emission through diabolo nanoantennas. ACS Photonics 2, 1071–1076 (2015). doi: 10.1021/acsphotonics.5b00128
[6] Rolly, B., Bebey, B., Bidault, S., Stout, B. & Bonod, N. Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances. Phys. Rev. B 85, 245432 (2012). doi: 10.1103/PhysRevB.85.245432
[7] Hein, S. M. & Giessen, H. Tailoring magnetic dipole emission with plasmonic split-ring resonators. Phys. Rev. Lett. 111, 026803 (2013). doi: 10.1103/PhysRevLett.111.026803
[8] Devaux, E. et al. Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B 62, 10504–10514 (2000). doi: 10.1103/PhysRevB.62.10504
[9] Burresi, M. et al. Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009). doi: 10.1126/science.1177096
[10] Suarez, M. A., Grosjean, T., Charraut, D. & Courjon, D. Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications. Opt. Commun. 270, 447–454 (2007). doi: 10.1016/j.optcom.2006.09.020
[11] Grosjean, T. et al. Annular nanoantenna on fibre micro-axicon. J. Microsc. 229, 354–364 (2008). doi: 10.1111/j.1365-2818.2008.01912.x
[12] Kihm, H. W. et al. Bethe-hole polarization analyser for the magnetic vector of light. Nat. Commun. 2, 451 (2011). doi: 10.1038/ncomms1430
[13] Le Feber, B., Rotenberg, N., Beggs, D. M. & Kuipers, L. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics 8, 43–46 (2014). doi: 10.1038/nphoton.2013.323
[14] Burresi, M. et al. Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105, 123901 (2010). doi: 10.1103/PhysRevLett.105.123901
[15] Vignolini, S. et al. Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett. 105, 123902 (2010). doi: 10.1103/PhysRevLett.105.123902
[16] Baida, F. I. & Grosjean, T. Double-way spectral tunability for the control of optical nanocavity resonance. Sci. Rep. 5, 17907 (2016). doi: 10.1038/srep17907
[17] Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A. 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185
[18] Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photonics 9, 796–808 (2015). doi: 10.1038/nphoton.2015.201
[19] Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014). doi: 10.1126/science.1257671
[20] Rodríguez-Herrera, O. G., Lara, D., Bliokh, K. Y., Ostrovskaya, E. A. & Dainty, C. Optical nanoprobing via spin-orbit interaction of light. Phys. Rev. Lett. 104, 253601 (2010). doi: 10.1103/PhysRevLett.104.253601
[21] Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001). doi: 10.1364/OL.26.001424
[22] Bliokh, K., Gorodetski, Y., Kleiner, V. & Hasman, E. Spin-orbit interaction in optics: Coriolis effect and unified geometric phase. Phys. Rev. Lett. 101, 030404 (2008). doi: 10.1103/PhysRevLett.101.030404
[23] Shitrit, N., Bretner, I., Gorodetski, Y., Kleiner, V. & Hasman, E. Optical spin Hall effects in plasmonic chains. Nano. Lett. 11, 2038–2042 (2011). doi: 10.1021/nl2004835
[24] Brasselet, E., Gervinskas, G., Seniutinas, G. & Juodkazis, S. Topological shaping of light by closed-path nanoslits. Phys. Rev. Lett. 111, 193901 (2013). doi: 10.1103/PhysRevLett.111.193901
[25] Gorodetski, Y., Drezet, A., Genet, C. & Ebbesen, T. W. Generating far-field orbital angular momenta from near-field optical chirality. Phys. Rev. Lett. 110, 203906 (2013). doi: 10.1103/PhysRevLett.110.203906
[26] Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013). doi: 10.1126/science.1233746
[27] Xi, Z., Lu, Y. H., Yu, W. H., Wang, P. & Ming, H. Unidirectional surface plasmon launcher: rotating dipole mimicked by optical antennas. J. Opt. 16, 105002 (2014). doi: 10.1088/2040-8978/16/10/105002
[28] Lee, S. Y. et al. Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons. Phys. Rev. Lett. 108, 213907 (2012). doi: 10.1103/PhysRevLett.108.213907
[29] Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013). doi: 10.1126/science.1233739
[30] Mueller, J. P. B., Leosson, K. & Capasso, F. Polarization-selective coupling to long-range surface plasmon polariton waveguides. Nano. Lett. 14, 5524–5527 (2014). doi: 10.1021/nl501860r
[31] Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013). doi: 10.1126/science.1234892
[32] Lefier, Y. & Grosjean, T. Unidirectional sub-diffraction waveguiding based on optical spin–orbit coupling in subwavelength plasmonic waveguides. Opt. Lett. 40, 2890–2893 (2015). doi: 10.1364/OL.40.002890
[33] Lefier, Y., Salut, R., Suarez, M. A. & Grosjean, T. Directing nanoscale optical flows by coupling photon spin to plasmon extrinsic angular momentum. Nano. Lett. 18, 38–42 (2018). doi: 10.1021/acs.nanolett.7b02828
[34] Le Feber, B., Rotenberg, N. & Kuipers, L. Nanophotonic control of circular dipole emission. Nat. Commun. 6, 6695 (2015). doi: 10.1038/ncomms7695
[35] Rodríguez-Fortuño, F. J., Barber-Sanz, I., Puerto, D., Griol, A. & Martínez, A. Resolving light handedness with an on-chip silicon microdisk. ACS Photonics 1, 762–767 (2014). doi: 10.1021/ph500084b
[36] Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Phys. Rev. A. 85, 061801 (2012). doi: 10.1103/PhysRevA.85.061801
[37] Kim, K. Y., Lee, I. M., Kim, J., Jung, J. & Lee, B. Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes. Phys. Rev. A. 86, 063805 (2012). doi: 10.1103/PhysRevA.86.063805
[38] Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014). doi: 10.1038/ncomms4300
[39] Kim, K. Y. Origin of the Abraham spin angular momentum of surface modes. Opt. Lett. 39, 682–684 (2014). doi: 10.1364/OL.39.000682
[40] Neugebauer, M., Bauer, T., Aiello, A. & Banzer, P. Measuring the transverse spin density of light. Phys. Rev. Lett. 114, 063901 (2015). doi: 10.1103/PhysRevLett.114.063901
[41] Kalhor, F., Thundat, T. & Jacob, Z. Universal spin-momentum locked optical forces. Appl. Phys. Lett. 108, 061102 (2016). doi: 10.1063/1.4941539
[42] Yeh, P., Yariv, A. & Cho, A. Y. Optical surface waves in periodic layered media. Appl. Phys. Lett. 32, 104–105 (1978). doi: 10.1063/1.89953
[43] Descrovi, E. et al. Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals. Opt. Express 16, 5453–5464 (2008). doi: 10.1364/OE.16.005453
[44] Descrovi, E. et al. Guided Bloch surface waves on ultrathin polymeric ridges. Nano. Lett. 10, 2087–2091 (2010). doi: 10.1021/nl100481q
[45] Kovalevich, T. et al. Polarization controlled directional propagation of Bloch surface wave. Opt. Express 25, 5710–5715 (2017). doi: 10.1364/OE.25.005710
[46] Dubey, R. et al. Ultra-thin Bloch-surface-wave-based reflector at telecommunication wavelength. Photonics Res 5, 494–499 (2017). doi: 10.1364/PRJ.5.000494
[47] Picardi, M. F., Manjavacas, A., Zayats, A. V. & Rodríguez-Fortuño, F. J. Unidirectional evanescent-wave coupling from circularly polarized electric and magnetic dipoles: an angular spectrum approach. Phys. Rev. B 95, 245416 (2017). doi: 10.1103/PhysRevB.95.245416
[48] Wang, J. K., Chen, J. G., Chen, K. J., Yi, W. & Zhang, W. Harmonically trapped quasi-two-dimensional Fermi gases with synthetic spin-orbit coupling. Sci. China Phys. Mechan Astron 59, 693011 (2016). doi: 10.1007/s11433-016-0118-9
[49] Konopsky, V. N. Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces. New J. Phys. 12, 093006 (2010). doi: 10.1088/1367-2630/12/9/093006
[50] Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. B. & Luk'yanchuk, B. Magnetic light. Sci. Rep. 2, 492 (2012).
[51] Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano. Lett. 12, 3749–3755 (2012). doi: 10.1021/nl301594s