[1] Martin, J. D. et al. Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb. Perspect. Med. 6, a027094 (2016). doi: 10.1101/cshperspect.a027094
[2] Alizadeh, A. A. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21, 846-853 (2015). doi: 10.1038/nm.3915
[3] Vennin, C. et al. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression. F1000Research 5, 892 (2016). doi: 10.12688/f1000research.8090.1
[4] Ellenbroek, S. I. J. & Van Rheenen, J. Imaging hallmarks of cancer in living mice. Nat. Rev. Cancer 14, 406-418 (2014). doi: 10.1038/nrc3742
[5] Nobis, M. et al. Advanced intravital subcellular imaging reveals vital three-dimensional signalling events driving cancer cell behaviour and drug responses in live tissue. FEBS J. 280, 5177-5197 (2013). doi: 10.1111/febs.12348
[6] Maeda, A., Kulbatski, I. & DaCosta, R. S. Emerging applications for optically enabled intravital microscopic imaging in radiobiology. Mol. Imaging 14, 452-474 (2015).
[7] Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603-614 (2010). doi: 10.1038/nmeth.1483
[8] Yao, J. J. et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J. Biomed. Opt. 16, 076003 (2011). doi: 10.1117/1.3594786
[9] Garvalov, B. K. & Ertürk, A. Seeing whole-tumour heterogeneity. Nat. Biomed. Eng. 1, 772-774 (2017). doi: 10.1038/s41551-017-0150-5
[10] Alieva, M. et al. Imaging windows for long-term intravital imaging: general overview and technical insights. IntraVital 3, e29917 (2014). doi: 10.4161/intv.29917
[11] Dobosz, M. et al. Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia 16, 1-13 (2014). doi: 10.1593/neo.131848
[12] Tanaka, N. et al. Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat. Biomed. Eng. 1, 796-806 (2017). doi: 10.1038/s41551-017-0139-0
[13] Hai, P. F. et al. High-throughput, label-free, single-cell photoacoustic microscopy of intratumoral metabolic heterogeneity. Nat. Biomed. Eng. 3, 381-391 (2019). doi: 10.1038/s41551-019-0376-5
[14] Mallidi, S., Luke, G. P. & Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 29, 213-221 (2011). doi: 10.1016/j.tibtech.2011.01.006
[15] Omar, M., Aguirre, J. & Ntziachristos, V. Optoacoustic mesoscopy for biomedicine. Nat. Biomed. Eng. 3, 354-370 (2019). doi: 10.1038/s41551-019-0377-4
[16] Taruttis, A., Van Dam, G. M. & Ntziachristos, V. Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res. 75, 1548-1559 (2015). doi: 10.1158/0008-5472.CAN-14-2522
[17] Ermolayev, V. et al. Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography. Eur. Radiol. 26, 1843-1851 (2016). doi: 10.1007/s00330-015-3980-0
[18] Herzog, E. et al. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology 263, 461-468 (2012). doi: 10.1148/radiol.11111646
[19] Tomaszewski, M. R. et al. Oxygen enhanced optoacoustic tomography (OE-OT) reveals vascular dynamics in murine models of prostate cancer. Theranostics 7, 2900-2913 (2017). doi: 10.7150/thno.19841
[20] Jathoul, A. P. et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9, 239-246 (2015). doi: 10.1038/nphoton.2015.22
[21] Laufer, J. G. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17, 056016 (2012). doi: 10.1117/1.JBO.17.5.056016
[22] Omar, M. et al. Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM). Neoplasia 17, 208-214 (2015). doi: 10.1016/j.neo.2014.12.010
[23] Ruan, Q. et al. Development of an anti-angiogenic therapeutic model combining scAAV2-delivered siRNAs and noninvasive photoacoustic imaging of tumor vasculature development. Cancer Lett. 332, 120-129 (2013). doi: 10.1016/j.canlet.2012.11.016
[24] Zhang, H. F. et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848-851 (2006). doi: 10.1038/nbt1220
[25] Diot, G. et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res. 23, 6912-6922 (2017). doi: 10.1158/1078-0432.CCR-16-3200
[26] Lao, Y. Q. et al. Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth. Phys. Med. Biol. 53, 4203-4212 (2008). doi: 10.1088/0031-9155/53/15/013
[27] Siphanto, R. I. et al. Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt. Express 13, 89-95 (2005). doi: 10.1364/OPEX.13.000089
[28] Chekkoury, A. et al. High-resolution multispectral optoacoustic tomography of the vascularization and constitutive hypoxemia of cancerous tumors. Neoplasia 18, 459-467 (2016). doi: 10.1016/j.neo.2016.06.004
[29] Razansky, D. et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 3, 412-417 (2009). doi: 10.1038/nphoton.2009.98
[30] Ntziachristos, V. & Razansky, D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110, 2783-2794 (2010). doi: 10.1021/cr9002566
[31] Gateau, J., Chekkoury, A. & Ntziachristos, V. High-resolution optoacoustic mesoscopy with a 24 MHz multidetector translate-rotate scanner. J. Biomed. Opt. 18, 106005 (2013). doi: 10.1117/1.JBO.18.10.106005
[32] Aguirre, J. et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng. 1, 0068 (2017). doi: 10.1038/s41551-017-0068
[33] Miettinen, M. Immunohistochemistry of soft tissue tumours - review with emphasis on 10 markers. Histopathology 64, 101-118 (2014). doi: 10.1111/his.12298
[34] Bos, R. et al. Levels of hypoxia-inducible factor-1α during breast carcinogenesis. J. Natl Cancer Inst. 93, 309-314 (2001). doi: 10.1093/jnci/93.4.309
[35] Zauner, C. Implementation and benchmarking of perceptual image hash functions. Master's thesis, Upper Austria University of Applied Sciences, Hagenberg Campus (2010).
[36] Tamura, H., Mori, S. & Yamawaki, T. Textural features corresponding to visual perception. IEEE Trans. Syst., Man, Cybern. 8, 460-473 (1978). doi: 10.1109/TSMC.1978.4309999
[37] Gonzalez, R. C. & Woods, R. E. Digital Image Processing. 3rd edn. 828-836 (Upper Saddle River: Prentice Hall, 2008)
[38] Yoon, S. H. et al. Tumor heterogeneity in lung cancer: assessment with dynamic contrast-enhanced MR imaging. Radiology 280, 940-948 (2016). doi: 10.1148/radiol.2016151367
[39] Chicklore, S. et al. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur. J. Nucl. Med. Mol. Imaging 40, 133-140 (2013). doi: 10.1007/s00259-012-2247-0
[40] Brooks, F. J. On some misconceptions about tumor heterogeneity quantification. Eur. J. Nucl. Med. Mol. Imaging 40, 1292-1294 (2013). doi: 10.1007/s00259-013-2430-y
[41] Baek, H. J. et al. Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology 264, 834-843 (2012). doi: 10.1148/radiol.12112120
[42] Yun, B. L. et al. Intratumoral heterogeneity of breast cancer xenograft models: texture analysis of diffusion-weighted MR imaging. Korean J. Radiol. 15, 591-604 (2014). doi: 10.3348/kjr.2014.15.5.591
[43] Miles, K. A., Ganeshan, B. & Hayball, M. P. CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging 13, 400-406 (2013). doi: 10.1102/1470-7330.2013.9045
[44] Weiss, G. J. et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS ONE 9, e100244 (2014). doi: 10.1371/journal.pone.0100244
[45] Di Pietro, P. et al. Gold and silver nanoparticles for applications in theranostics. Curr. Top. Medicinal Chem. 16, 3069-3102 (2016). doi: 10.2174/1568026616666160715163346
[46] Gujrati, V., Mishra, A. & Ntziachristos, V. Molecular imaging probes for multi-spectral optoacoustic tomography. Chem. Commun. 53, 4653-4672 (2017). doi: 10.1039/C6CC09421J
[47] Albini, A. et al. Cancer prevention by targeting angiogenesis. Nat. Rev. Clin. Oncol. 9, 498-509 (2012). doi: 10.1038/nrclinonc.2012.120
[48] Pulaski, B. A. & Ostrand-Rosenberg, S. Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res. 58, 1486-1493 (1998).
[49] Molina, D. et al. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization. PLoS ONE 12, e0178843 (2017). doi: 10.1371/journal.pone.0178843
[50] Wagner, F. et al. Comparison of contrast-enhanced CT and [18F]FDG PET/CT analysis using kurtosis and skewness in patients with primary colorectal cancer. Mol. Imaging Biol. 19, 795-803 (2017). doi: 10.1007/s11307-017-1066-x
[51] Chaudhury, B. et al. Heterogeneity in intratumoral regions with rapid gadolinium washout correlates with estrogen receptor status and nodal metastasis. J. Magn. Reson. Imaging 42, 1421-1430 (2015). doi: 10.1002/jmri.24921
[52] Cook, G. J. R. et al. Characterisation of malignant peripheral nerve sheath tumours in neurofibromatosis-1 using heterogeneity analysis of 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 44, 1845-1852 (2017). doi: 10.1007/s00259-017-3733-1
[53] Doshi, A. M. et al. Use of MRI in differentiation of papillary renal cell carcinoma subtypes: qualitative and quantitative analysis. Am. J. Roentgenol. 206, 566-572 (2016). doi: 10.2214/AJR.15.15004
[54] Li, H. et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. npj Breast Cancer 2, 16012 (2016). doi: 10.1038/npjbcancer.2016.12
[55] Shen, W. C. et al. [18]Fluorodeoxyglucose positron emission tomography for the textural features of cervical cancer associated with lymph node metastasis and histological type. Eur. J. Nucl. Med. Mol. Imaging 44, 1721-1731 (2017). doi: 10.1007/s00259-017-3697-1
[56] Soussan, M. et al. Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer. PLoS ONE 9, e94017 (2014). doi: 10.1371/journal.pone.0094017
[57] Rodriguez Gutierrez, D. et al. Serial MR diffusion to predict treatment response in high-grade pediatric brain tumors: a comparison of regional and voxel-based diffusion change metrics. Neuro-Oncol. 15, 981-989 (2013). doi: 10.1093/neuonc/not034
[58] Tochigi, T. et al. Heterogeneity of glucose metabolism in esophageal cancer measured by fractal analysis of fluorodeoxyglucose positron emission tomography image: correlation between metabolic heterogeneity and survival. Digestive Surg. 34, 186-191 (2017). doi: 10.1159/000447751
[59] Zhou, M. et al. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J. Magn. Reson. Imaging 46, 115-123 (2017). doi: 10.1002/jmri.25497
[60] Hayano, K. et al. Fractal analysis of contrast-enhanced CT images to predict survival of patients with hepatocellular carcinoma treated with sunitinib. Digestive Dis. Sci. 59, 1996-2003 (2014). doi: 10.1007/s10620-014-3064-z
[61] Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014). doi: 10.1038/ncomms5006
[62] Chitnis, P. V., Mamou, J. & Feleppa, E. J. Spectrum analysis of photoacoustic signals for characterizing lymph nodes. J. Acoustical Soc. Am. 135, 2372 (2014). doi: 10.1121/1.4877828
[63] Patterson, M. P. et al. Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model. J. Biomed. Opt. 19, 056008 (2014). doi: 10.1117/1.JBO.19.5.056008
[64] Xu, G. et al. The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis. Radiology 271, 248-254 (2014). doi: 10.1148/radiol.13130777
[65] Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639-650 (2016). doi: 10.1038/nmeth.3929
[66] Cuccarese, M. F. et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat. Commun. 8, 14293 (2017). doi: 10.1038/ncomms14293
[67] Li, M. L. et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 96, 481-489 (2008). doi: 10.1109/JPROC.2007.913515
[68] Conway, J. R. W., Carragher, N. O. & Timpson, P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat. Rev. Cancer 14, 314-328 (2014). doi: 10.1038/nrc3724
[69] Weissleder, R. et al. Imaging approaches to optimize molecular therapies. Sci. Transl. Med. 8, 355ps16 (2016). doi: 10.1126/scitranslmed.aaf3936
[70] Miller, M. A. & Weissleder, R. Imaging the pharmacology of nanomaterials by intravital microscopy: toward understanding their biological behavior. Adv. Drug Deliv. Rev. 113, 61-68 (2017). doi: 10.1016/j.addr.2016.05.023
[71] Kurebayashi, J. et al. Isolation and characterization of a new human breast cancer cell line, KPL-4, expressing the Erb B family receptors and interleukin-6. Br. J. Cancer 79, 707-717 (1999). doi: 10.1038/sj.bjc.6690114
[72] Chekkoury, A. et al. Optical mesoscopy without the scatter: broadband multispectral optoacoustic mesoscopy. Biomed. Opt. Express 6, 3134-3148 (2015). doi: 10.1364/BOE.6.003134
[73] Gateau, J., Chekkoury, A. & Ntziachristos, V. Ultra-wideband three-dimensional optoacoustic tomography. Opt. Lett. 38, 4671-4674 (2013). doi: 10.1364/OL.38.004671
[74] Treeby, B. E. Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering. J. Biomed. Opt. 18, 036008 (2013). doi: 10.1117/1.JBO.18.3.036008
[75] Gateau, J. et al. Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals. Med. Phys. 40, 013302 (2013). doi: 10.1118/1.4770292
[76] Jetzfellner, T. et al. Performance of iterative optoacoustic tomography with experimental data. Appl. Phys. Lett. 95, 013703 (2009). doi: 10.1063/1.3167280
[77] Schneider, C., Rasband, W. & Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675 (2012). doi: 10.1038/nmeth.2089
[78] Tzoumas, S. et al. Unmixing molecular agents from absorbing tissue in multispectral optoacoustic tomography. IEEE Trans. Med. Imaging 33, 48-60 (2014). doi: 10.1109/TMI.2013.2279994
[79] Varia, M. A. et al. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecologic Oncol. 71, 270-277 (1998). doi: 10.1006/gyno.1998.5163
[80] Arteel, G. E. et al. Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br. J. Cancer 72, 889-895 (1995). doi: 10.1038/bjc.1995.429
[81] Kennedy, A. S. et al. Proliferation and hypoxia in human squamous cell carcinoma of the cervix: first report of combined immunohistochemical assays. Int. J. Radiat. Oncol. Biol. Phys. 37, 897-905 (1997). doi: 10.1016/S0360-3016(96)00539-1