[1] Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959-2007 (2010). doi: 10.1103/RevModPhys.82.1959
[2] Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004). doi: 10.1103/PhysRevLett.93.083901
[3] Bliokh, K. Y. & Bliokh, Y. P. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett. 96, 073903 (2006). doi: 10.1103/PhysRevLett.96.073903
[4] Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787-790 (2008). doi: 10.1126/science.1152697
[5] Bliokh, K. Y. et al. Spin-orbit interactions of light. Nat. Photonics 9, 796-808 (2015). doi: 10.1038/nphoton.2015.201
[6] Aiello, A. et al. Transverse angular momentum and geometric spin Hall effect of light. Phys. Rev. Lett. 103, 100401 (2009). doi: 10.1103/PhysRevLett.103.100401
[7] Korger, J. et al. Observation of the geometric spin Hall effect of light. Phys. Rev. Lett. 112, 113902 (2014). doi: 10.1103/PhysRevLett.112.113902
[8] Yin, X. B. et al. Photonic spin Hall effect at metasurfaces. Science 339, 1405-1407 (2013). doi: 10.1126/science.1231758
[9] Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233-239 (2013). doi: 10.1038/nmat3520
[10] Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140-144 (2018). doi: 10.1038/nphys4304
[11] Kang, Y. H. et al. Pseudo-spin-valley coupled edge states in a photonic topological insulator. Nat. Commun. 9, 3029 (2018). doi: 10.1038/s41467-018-05408-w
[12] Ni, X. et al. Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators. Sci. Adv. 4, eaap8802 (2018). doi: 10.1126/sciadv.aap8802
[13] Nalitov, A. V. et al. Spin-orbit coupling and the optical spin Hall effect in photonic graphene. Phys. Rev. Lett. 114, 026803 (2015). doi: 10.1103/PhysRevLett.114.026803
[14] Liu, J. L., Ye, W. M. & Zhang, S. Pseudospin-induced chirality with staggered optical graphene. Light.: Sci. Appl. 5, e16094 (2016). doi: 10.1038/lsa.2016.94
[15] Dong, J. W. et al. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298-303 (2017). doi: 10.1038/nmat4807
[16] Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196-200 (2013). doi: 10.1038/nature12066
[17] Plotnik, Y. et al. Observation of unconventional edge states in 'photonic graphene'. Nat. Mater. 13, 57-62 (2014). doi: 10.1038/nmat3783
[18] Song, D. H. et al. Unveiling pseudospin and angular momentum in photonic graphene. Nat. Commun. 6, 6272 (2015). doi: 10.1038/ncomms7272
[19] Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008). doi: 10.1103/PhysRevA.78.033834
[20] Zhang, C. W. & Niu, Q. Geometric optics of Bloch waves in a chiral and dissipative medium. Phys. Rev. A 81, 053803 (2010). doi: 10.1103/PhysRevA.81.053803
[21] Xu, S. Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613-617 (2015). doi: 10.1126/science.aaa9297
[22] Weng, H. M. et al. Weyl Semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).
[23] Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495-498 (2015). doi: 10.1038/nature15768
[24] Lu, L. et al. Weyl points and line nodes in gyroid photonic crystals. Nat. Photonics 7, 294-299 (2013). doi: 10.1038/nphoton.2013.42
[25] Lu, L. et al. Experimental observation of Weyl points. Science 349, 622-624 (2015). doi: 10.1126/science.aaa9273
[26] Chen, W. J., Xiao, M. & Chan, C. T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nat. Commun. 7, 13038 (2016). doi: 10.1038/ncomms13038
[27] Gao, W. L. et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 7, 12435 (2016). doi: 10.1038/ncomms12435
[28] Yang, B. et al. Direct observation of topological surface-state arcs in photonic metamaterials. Nat. Commun. 8, 7 (2017). doi: 10.1038/s41467-016-0008-7
[29] Yang, B. et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science 359, 1013-1016 (2018). doi: 10.1126/science.aaq1221
[30] Lin, Q. et al. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun. 7, 13731 (2016). doi: 10.1038/ncomms13731
[31] Zhang, Y. & Zhu, Y. Y. Generation of Weyl points in coupled optical microdisk-resonator arrays via external modulation. Phys. Rev. A 96, 013811 (2017). doi: 10.1103/PhysRevA.96.013811
[32] Wang, Q. et al. Optical interface states protected by synthetic Weyl points. Phys. Rev. X 7, 031032 (2017).
[33] Sawada, K., Murakami, S. & Nagaosa, N. Dynamical diffraction theory for wave packet propagation in deformed crystals. Phys. Rev. Lett. 96, 154802 (2006). doi: 10.1103/PhysRevLett.96.154802
[34] Kurosawa, H., Sawada, K. & Ohno, S. Photon drag effect due to berry curvature. Phys. Rev. Lett. 17, 083901 (2016).
[35] Schrӧdinger, E. Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitz. der Preuss. Akad. der Wiss. Phys.-Math. Kl. 24, 418-428 (1930).
[36] Zhang, X. D. Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal. Phys. Rev. Lett. 100, 113903 (2008). doi: 10.1103/PhysRevLett.100.113903
[37] Dreisow, F. et al. Classical simulation of relativistic Zitterbewegung in photonic lattices. Phys. Rev. Lett. 105, 143902 (2010). doi: 10.1103/PhysRevLett.105.143902
[38] Dávid, G. & Cserti, J. General theory of Zitterbewegung. Phys. Rev. B 81(R), 121417 (2010).
[39] Szameit, A. et al. Discrete nonlinear localization in femtosecond laser written waveguides in fused silica. Opt. Express 13, 10552-10557 (2005). doi: 10.1364/OPEX.13.010552