[1] Baldacchini, T. Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications. (William Andrew, 2015).
[2] Hahn, V. et al. 3-D laser nanoprinting. Optics and Photonics News 30, 28-35 (2019).
[3] Matsuo, S., Juodkazis, S. & Misawa, H. Femtosecond laser microfabrication of periodic structures using a microlens array. Applied Physics A 80, 683-685 (2005). doi: 10.1007/s00339-004-3108-x
[4] Sun, Z. B. et al. Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures. Advanced Materials 20, 914-919 (2008). doi: 10.1002/adma.200702035
[5] Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371-378 (2016). doi: 10.1038/nature21003
[6] Do, M. T. et al. Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing. Optics Express 21, 20964-20973 (2013). doi: 10.1364/OE.21.020964
[7] Malinauskas, M., Danilevičius, P. & Juodkazis, S. Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses. Optics Express 19, 5602-5610 (2011). doi: 10.1364/OE.19.005602
[8] Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser & Photonics Reviews 7, 22-44 (2013).
[9] Kiefer, P. et al. Sensitive photoresists for rapid multiphoton 3D laser micro- and nanoprinting. Advanced Optical Materials 8, 2000895 (2020). doi: 10.1002/adom.202000895
[10] Samsonas, D. et al. 3D nanopolymerization and damage threshold dependence on laser wavelength and pulse duration. Nanophotonics 12, 1537-1548 (2023).
[11] Maibohm, C. et al. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Scientific Reports 10, 8740 (2020). doi: 10.1038/s41598-020-64955-9
[12] Dong, X. Z., Zhao, Z. S. & Duan, X. M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing. Applied Physics Letters 91, 124103 (2007). doi: 10.1063/1.2789661
[13] Hahn, V. et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials. Advanced Functional Materials 30, 1907795 (2020). doi: 10.1002/adfm.201907795
[14] Gittard, S. D. et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomedical Optics Express 2, 3167-3178 (2011). doi: 10.1364/BOE.2.003167
[15] Yang, L. et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Optics and Lasers in Engineering 70, 26-32 (2015).
[16] Yan, W. S., Cumming, B. P. & Gu, M. High-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processing. Journal of Optics 17, 075803 (2015). doi: 10.1088/2040-8978/17/7/075803
[17] Obata, K. et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Optics Express 18, 17193-17200 (2010). doi: 10.1364/OE.18.017193
[18] Kato, J. I. et al. Multiple-spot parallel processing for laser micronanofabrication. Applied Physics Letters 86, 044102 (2005). doi: 10.1063/1.1855404
[19] Arrizón, V. & Testorf, M. Efficiency limit of spatially quantized Fourier array illuminators. Optics Letters 22, 197-199 (1997). doi: 10.1364/OL.22.000197
[20] Goodman, J. W. Introduction to Fourier Optics. 3rd edn. (Englewood: Roberts and Company Publishers, 2005).
[21] Hu, Q. L. et al. Compensation of spatial dispersion of an acousto-optic deflector with a special Keplerian telescope. Optics Letters 41, 207-210 (2016). doi: 10.1364/OL.41.000207
[22] Urey, H. Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams. Applied Optics 43, 620-625 (2004). doi: 10.1364/AO.43.000620
[23] Bass, M. Handbook of Optics: Volume I - Geometrical and Physical Optics, Polarized Light, Components and Instruments. 3rd edn. (New York: McGraw-Hill, 2010).
[24] Stirman, J. N. et al. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nature Biotechnology 34, 857-862 (2016). doi: 10.1038/nbt.3594
[25] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-246 (1972).
[26] Nanoscribe GmbH. Introducing Two-Photon Grayscale Lithography (White paper, 2021).
[27] Weinacker, J. et al. On iterative precompensation of 3D laser-printed micro-optical components using confocal optical microscopy. Advanced Functional Materials 2309356 (2023).
[28] Bock, S. et al. Additive Manufacturing in respiratory sciences - Current applications and future prospects. Advanced Drug Delivery Reviews 186, 114341 (2022). doi: 10.1016/j.addr.2022.114341
[29] Chen, Y. et al. Observation of chirality-induced roton-like dispersion in a 3D micropolar elastic metamaterial. Advanced Functional Materials (in the press).
[30] Jiao, B. Z. et al. Acousto-optic scanning spatial-switching multiphoton lithography. International Journal of Extreme Manufacturing 5, 035008 (2023).
[31] Gratson, G. M. et al. Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Advanced Materials 18, 461-465 (2006). doi: 10.1002/adma.200501447
[32] Duoss, E. B., Twardowski, M. & Lewis, J. A. Sol-gel inks for direct-write assembly of functional oxides. Advanced Materials 19, 3485-3489 (2007). doi: 10.1002/adma.200701372
[33] Plank, H. et al. The influence of beam defocus on volume growth rates for electron beam induced platinum deposition. Nanotechnology 19, 485302 (2008). doi: 10.1088/0957-4484/19/48/485302
[34] Stratasys Fortus 360MC. (2008).
[35] Fischer, J. & Wegener, M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited]. Optical Materials Express 1, 614-624 (2011). doi: 10.1364/OME.1.000614
[36] Stratasys Mojo. (2012).
[37] Zheng, X. Y. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373-1377 (2014). doi: 10.1126/science.1252291
[38] Zheng, X. Y. et al. Multiscale metallic metamaterials. Nature Materials 15, 1100-1106 (2016). doi: 10.1038/nmat4694
[39] Zheng, X. Y. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Review of Scientific Instruments 83, 125001 (2012). doi: 10.1063/1.4769050
[40] Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Science Advances 3, eaao5496 (2017).
[41] 3D Systems ProJet 7000 HD, vendor information. (2012).
[42] Nanoscribe Professional GT. (2014).
[43] Bückmann, T. et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nature Communications 5, 4130 (2014). doi: 10.1038/ncomms5130
[44] Duoss, E. B. et al. Three-dimensional printing of elastomeric, cellular architectures with negative stiffness. Advanced Functional Materials 24, 4905-4913 (2014). doi: 10.1002/adfm.201400451
[45] Stratasys Objet 500 Connex1. (2014).
[46] Ultimaker 2 Extended. (2015).
[47] Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349-1352 (2015). doi: 10.1126/science.aaa2397
[48] EOS P 770 with PA 2200 Top Speed 1.0, datasheet and vendor information. (2016).
[49] EOS FORMIGA P 110 with PA 2200 Top Quality 1.0, datasheet and vendor information. (2016).
[50] HP JetFusion 3D 4210. (2017).
[51] Pearre, B. W. et al. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Additive Manufacturing 30, 100887 (2019). doi: 10.1016/j.addma.2019.100887
[52] Keller, L. & Huth, M. Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition. Beilstein Journal of Nanotechnology 9, 2581-2598 (2018). doi: 10.3762/bjnano.9.240
[53] Chu, W. et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization. Advanced Materials Technologies 3, 1700396 (2018). doi: 10.1002/admt.201700396
[54] Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075-1079 (2019). doi: 10.1126/science.aau7114
[55] Geng, Q. et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nature Communications 10, 2179 (2019). doi: 10.1038/s41467-019-10249-2
[56] Reiser, A. et al. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nature Communications 10, 1853 (2019). doi: 10.1038/s41467-019-09827-1
[57] Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360-364 (2019). doi: 10.1126/science.aax1562
[58] Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105-109 (2019). doi: 10.1126/science.aax8760
[59] Hahn, V. & Wegener, M. Response to “comment on rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials”. Advanced Functional Materials 30, 2003402 (2020). doi: 10.1002/adfm.202003402
[60] Bernal, P. N. et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Advanced Materials 31, 1904209 (2019). doi: 10.1002/adma.201904209
[61] Jonušauskas, L. et al. Mesoscale laser 3D printing. Optics Express 27, 15205-15221 (2019). doi: 10.1364/OE.27.015205
[62] Loterie, D., Delrot, P. & Moser, C. High-resolution tomographic volumetric additive manufacturing. Nature Communications 11, 852 (2020). doi: 10.1038/s41467-020-14630-4
[63] Ercolano, G. et al. Multiscale additive manufacturing of metal microstructures. Advanced Engineering Materials 22, 1900961 (2020). doi: 10.1002/adem.201900961
[64] Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620-624 (2020). doi: 10.1038/s41586-020-3029-7
[65] Chen, Y. W. et al. Noninvasive in vivo 3D bioprinting. Science Advances 6, eaba7406 (2020). doi: 10.1126/sciadv.aba7406
[66] Jung, W. et al. Three-dimensional nanoprinting via charged aerosol jets. Nature 592, 54-59 (2021). doi: 10.1038/s41586-021-03353-1
[67] Somers, P. et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light:Science & Applications 10, 199 (2021).
[68] Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nature Photonics 15, 932-938 (2021). doi: 10.1038/s41566-021-00906-8
[69] Limberg, D. K., Kang, J. H. & Hayward, R. C. Triplet–triplet annihilation photopolymerization for high-resolution 3D printing. Journal of the American Chemical Society 144, 5226-5232 (2022). doi: 10.1021/jacs.1c11022
[70] Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nature Photonics 16, 784-791 (2022). doi: 10.1038/s41566-022-01081-0
[71] Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474-478 (2022). doi: 10.1038/s41586-022-04485-8
[72] Ouyang, W. Q. et al. Ultrafast 3D nanofabrication via digital holography. Nature Communications 14, 1716 (2023). doi: 10.1038/s41467-023-37163-y
[73] Egner, A., Andresen, V. & Hell, S. W. Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment. Journal of Microscopy 206, 24-32 (2002). doi: 10.1046/j.1365-2818.2002.01001.x
[74] Egner, A. & Hell, S. W. Time multiplexing and parallelization in multifocal multiphoton microscopy. Journal of the Optical Society of America A 17, 1192-1201 (2000). doi: 10.1364/JOSAA.17.001192
[75] Butkus, A. et al. Femtosecond-laser direct writing 3D micro/nano-lithography using VIS-light oscillator. Journal of Central South University 29, 3270-3276 (2022). doi: 10.1007/s11771-022-5153-z