[1] Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V et al. Ultrafast laser processing of materials: from science to industry. Light Sci Appl 2016; 5: e16133. doi: 10.1038/lsa.2016.133
[2] Shiu PP, Knopf GK, Ostojic M, Nikumb S. Rapid fabrication of tooling for microfluidic devices via laser micromachining and hot embossing. J Micromech Microeng 2008; 18: 025012. doi: 10.1088/0960-1317/18/2/025012
[3] Saga T. Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2010; 2: 96–102. doi: 10.1038/asiamat.2010.82
[4] Kim TN, Campbell K, Groisman A, Kleinfeld D, Schaffer CB. Femtosecond laser-drilled capillary integrated into a microfluidic device. Appl Phys Lett 2005; 86: 201106. doi: 10.1063/1.1926423
[5] Baker CA, Bulloch R, Roper MG. Comparison of separation performance of laser-ablated and wet-etched microfluidic devices. Anal Bioanal Chem 2011; 399: 1473–1479. doi: 10.1007/s00216-010-4144-3
[6] Gu E, Jeon CW, Choi HW, Rice G, Dawson MD et al. Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser. Thin Solid Films 2004; 453-454: 462–466. doi: 10.1016/j.tsf.2003.11.133
[7] Wang DL, Cui HJ, Hou GJ, Zhu ZG, Yan QB et al. Highly efficient light management for perovskite solar cells. Sci Rep 2016; 6: 18922. doi: 10.1038/srep18922
[8] Carey JE, Crouch CH, Shen M, Mazur E. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt Lett 2005; 30: 1773–1775. doi: 10.1364/OL.30.001773
[9] Davis SP, Prausnitz MR, Allen MG Fabrication and Characterization of Laser Micromachined Hollow Microneedles. Proceedings of 12th International Conference on, 2003 TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems; 8–12 June 2003; IEEE: Boston, MA, USA, 2003..
[10] Brazzle J, Papautsky I, Frazier A. Micromachined needle arrays for drug delivery or fluid extraction. IEEE Eng Med Biol Mag 1999; 18: 53–58. doi: 10.1109/51.805145
[11] Caliano G, Carotenuto R, Cianci E, Foglietti V, Caronti A et al. Design, fabrication and characterization of a capacitive micromachined ultrasonic probe for medical imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52: 2259–2269. doi: 10.1109/TUFFC.2005.1563268
[12] Oralkan O, Ergun AS, Johnson JA, Karaman M, Demirci U et al. Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging? IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 1596–1610. doi: 10.1109/TUFFC.2002.1049742
[13] Nijs JF, Szlufcik J, Poortmans J, Sivoththaman S, Mertens RP. Advanced cost-effective crystalline silicon solar cell technologies. Solar Energy Mater Solar Cells 2001; 65: 249–259. doi: 10.1016/S0927-0248(00)00100-8
[14] Gower MC. Industrial applications of laser micromachining. Opt Express 2000; 7: 56–67. doi: 10.1364/OE.7.000056
[15] Neuhaus DH, Münzer A. Industrial silicon wafer solar cells. Adv OptoElectron 2007; 2007: 24521. doi: 10.1155/2007/24521
[16] Bechtold P, Zimmermann M, Roth S, Alexeev I, Schmidt M. Ultrashort laser pulse technology. Opt Sci 2015; 3: 245.
[17] Duocastella M, Arnold CB. Bessel and annular beams for materials processing. Laser Photon Rev 2012; 6: 607–621. doi: 10.1002/lpor.201100031
[18] Kammel R, Ackermann R, Thomas J, Götte J, Skupin S et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light: Sci Appl 2014; 3: e169. doi: 10.1038/lsa.2014.50
[19] Sanner N, Huot N, Audouard N, Larat C, Huignard JP et al. Programmable focal spot shaping of amplified femtosecond laser pulses. Opt Lett 2005; 30: 1479–1481. doi: 10.1364/OL.30.001479
[20] Lin JY, Huang RP, Tsai PS, Lee CH. Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator. J Opt A 2008; 11: 015301. doi: 10.1088/1464-4258/11/1/015301
[21] Bush K, German D, Klemme B, Marrs A, Schoen M Electrostatic membrane deformable mirror wavefront control systems: design and analysis. Proceedings of the SPIE 5553, Advanced Wavefront Control: Methods, Devices, and Applications Ⅱ; 12 October 2004, SPIE: Denver, CO, USA, 2004. 5553: 28–38..
[22] Bifano TG, Perreault JA, Bierden PA, Dimas CE Micromachined Deformable Mirrors for Adaptive Optics. Proceedings of the SPIE 4825, High-Resolution Wavefront Control: Methods, Devices, and Applications Ⅳ; 6 November 2002, SPIE: Seattle, WA, USA, 2002. 4825: 10–13.
[23] Ren H, Wu ST. Variable-focus liquid lens by changing aperture. Appl Phys Lett 2005; 86: 211107. doi: 10.1063/1.1935749
[24] Ren HW, Fox D, Anderson PA, Wu B, Wu ST. Tunable-focus liquid lens controlled using a servo motor. Opt Express 2006; 14: 8031–8036. doi: 10.1364/OE.14.008031
[25] Naumov AF, Loktev MY, Guralnik IR, Vdovin G. Liquid-crystal adaptive lenses with modal control. Opt Lett 1998; 23: 992–994. doi: 10.1364/OL.23.000992
[26] Mermillod-Blondin A, McLeod E, Arnold CB. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. Opt Lett 2008; 33: 2146–2148. doi: 10.1364/OL.33.002146
[27] Chen TH, Ault JT, Stone HA, Arnold CB. High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry. Exp Fluids 2017; 58: 41. doi: 10.1007/s00348-017-2316-z
[28] Duocastella M, Arnold CB. Enhanced depth of field laser processing using an ultra-high-speed axial scanner. Appl Phys Lett 2013; 102: 061113. doi: 10.1063/1.4791593
[29] Lu QM, Mao SS, Mao XL, Russo RE. Delayed phase explosion during high-power nanosecond laser ablation of silicon. Appl Phys Lett 2002; 80: 3072–3074. doi: 10.1063/1.1473862
[30] Yoo JH, Jeong SH, Greif R, Russo RE. Explosive change in crater properties during high power nanosecond laser ablation of silicon. J Appl Phys 2000; 88: 1638–1649. doi: 10.1063/1.373865
[31] Schwarz-Selinger T, Cahill DG, Chen SC, Moon SJ, Grigoropoulos CP. Micron-scale modifications of Si surface morphology by pulsed-laser texturing. Phys Rev B Condens Matter Mater Phys 2001; 64: 155323. doi: 10.1103/PhysRevB.64.155323
[32] Liu JM. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 1982; 7: 196–198. doi: 10.1364/OL.7.000196
[33] Hoel PG, Port SC, Stone CJ Introduction to Probability Theory. Boston, MA: Houghton Mifflin; 1971.
[34] Srinivasan R, Braren B. Ablative photodecomposition of polymer films by pulsed far-ultraviolet (193 nm) laser radiation: dependence of etch depth on experimental conditions. J Polymer Sci 1984; 22: 2601–2609.
[35] Srinivasan R, Braren B. Ultraviolet laser ablation of organic polymers. Chem Rev 1989; 89: 1303–1316. doi: 10.1021/cr00096a003
[36] Wang WJ, Mei XS, Jiang GD, Lei ST, Yang CE. Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals. Appl Surf Sci 2008; 255: 2303–2311. doi: 10.1016/j.apsusc.2008.07.100