[1] Tang, C. W. & Vanslyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987). doi: 10.1063/1.98799
[2] Ma, Y. G. et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes. Synth. Met. 94, 245–248 (1998). doi: 10.1016/S0379-6779(97)04166-0
[3] Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998). doi: 10.1038/25954
[4] Baldo, M. A. et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75, 4–6 (1999). doi: 10.1063/1.124258
[5] Helander, M. G. et al. Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Science 332, 944–947 (2011). doi: 10.1126/science.1202992
[6] Endo, A. et al. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes—a novel mechanism for electroluminescence. Adv. Mater. 21, 4802–4806 (2009). doi: 10.1002/adma.200900983
[7] Uoyama, H. et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012). doi: 10.1038/nature11687
[8] Hamze, R. et al. Eliminating nonradiative decay in Cu(I) emitters: > 99% quantum efficiency and microsecond lifetime. Science 363, 601–606 (2019). doi: 10.1126/science.aav2865
[9] Peng, Q. M. et al. Organic light-emitting diodes using a neutral π radical as emitter: the emission from a doublet. Angew. Chem. 127, 7197–7201 (2015). doi: 10.1002/ange.201500242
[10] Obolda, A. et al. Up to 100% formation ratio of doublet exciton in deep-red organic light-emitting diodes based on neutral π-radical. ACS Appl. Mater. Interfaces 8, 35472–35478 (2016). doi: 10.1021/acsami.6b12338
[11] Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018). doi: 10.1038/s41586-018-0695-9
[12] Yin, H. L. et al. Luminescent Ce(III) complexes as stoichiometric and catalytic photoreductants for halogen atom abstraction reactions. J. Am. Chem. Soc. 137, 9234–9237 (2015). doi: 10.1021/jacs.5b05411
[13] Yin, H. L. et al. Cerium photosensitizers: structure–function relationships and applications in photocatalytic aryl coupling reactions. J. Am. Chem. Soc. 138, 5984–5993 (2016). doi: 10.1021/jacs.6b02248
[14] Qiao, Y. S. et al. Understanding and controlling the emission brightness and color of molecular cerium luminophores. J. Am. Chem. Soc. 140, 4588–4595 (2018). doi: 10.1021/jacs.7b13339
[15] Lindqvist-Reis, P. et al. Unraveling the ground state and excited state structures and dynamics of hydrated Ce3+ ions by experiment and theory. Inorg. Chem. 57, 10111–10121 (2018). doi: 10.1021/acs.inorgchem.8b01224
[16] Qin, X. et al. Lanthanide-activated phosphors based on 4f–5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117, 4488–4527 (2017). doi: 10.1021/acs.chemrev.6b00691
[17] Wenger, O. S. Photoactive complexes with earth-abundant metals. J. Am. Chem. Soc. 140, 13522–13533 (2018). doi: 10.1021/jacs.8b08822
[18] Frey, S. T. & Horrocks, W. D. Complexation, luminescence, and energy transfer of cerium(3+) with a series of multidentate aminophosphonic acids in aqueous solution. Inorg. Chem. 30, 1073–1079 (1991). doi: 10.1021/ic00005a036
[19] Yu, T. Z. et al. Ultraviolet electroluminescence from organic light-emitting diode with cerium(III)–crown ether complex. Solid-State Electron. 51, 894–899 (2007). doi: 10.1016/j.sse.2007.05.003
[20] Zheng, X. L. et al. Bright blue-emitting Ce3+ complexes with encapsulating polybenzimidazole tripodal ligands as potential electroluminescent devices. Angew. Chem. Int. Ed. 46, 7399–7403 (2007). doi: 10.1002/anie.200702401
[21] Katkova, M. A. et al. Lanthanide imidodiphosphinate complexes: synthesis, structure and new aspects of electroluminescent properties. Synth. Met. 159, 1398–1402 (2009). doi: 10.1016/j.synthmet.2009.03.015
[22] Trofimenko, S. Boron-pyrazole chemistry. J. Am. Chem. Soc. 88, 1842–1844 (1966). doi: 10.1021/ja00960a065
[23] Bünzli, J. C. G. & Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005). doi: 10.1039/b406082m
[24] Kunkely, H. & Vogler, A. Can halides serve as a charge transfer acceptor? Metal-centered and metal-to-ligand charge transfer excitation of cerium(III) halides. Inorg. Chem. Commun. 9, 1–3 (2006). doi: 10.1016/j.inoche.2005.08.017
[25] Lee, J. et al. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat. Mater. 15, 92–98 (2016). doi: 10.1038/nmat4446
[26] Chou, H. H. & Cheng, C. H. A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs. Adv. Mater. 22, 2468–2471 (2010). doi: 10.1002/adma.201000061
[27] Yang, H. et al. A phosphanthrene oxide host with close sphere packing for ultralow-voltage-driven efficient blue thermally activated delayed fluorescence diodes. Adv. Mater. 29, 1700553 (2017). doi: 10.1002/adma.201700553
[28] Li, X. Y. et al. Deep blue phosphorescent organic light-emitting diodes with ciey value of 0.11 and external quantum efficiency up to 22.5%. Adv. Mater. 30, 1705005 (2018).
[29] Schmidt, T. D. et al. Emitter orientation as a key parameter in organic light-emitting diodes. Phys. Rev. Appl. 8, 037001 (2017). doi: 10.1103/PhysRevApplied.8.037001
[30] Kim, K. H. & Kim, J. J. Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Adv. Mater. 30, 1705600 (2018). doi: 10.1002/adma.201705600
[31] Fleetham, T. et al. Efficient "pure" blue OLEDs employing tetradentate Pt complexes with a narrow spectral bandwidth. Adv. Mater. 26, 7116–7121 (2014). doi: 10.1002/adma.201401759
[32] Pal, A. K. et al. High-efficiency deep-blue-emitting organic light-emitting diodes based on iridium(III) carbene complexes. Adv. Mater. 30, 1804231 (2018). doi: 10.1002/adma.201804231
[33] Ahn, D. H. et al. Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nat. Photonics 13, 540–546 (2019). doi: 10.1038/s41566-019-0415-5
[34] Liu, R. et al. Transient electroluminescence spikes in small molecular organic light-emitting diodes. Phys. Rev. B 83, 245302 (2011). doi: 10.1103/PhysRevB.83.245302
[35] Bian, M. Y. et al. A combinational molecular design to achieve highly efficient deep-blue electrofluorescence. J. Mater. Chem. C 6, 745–753 (2018). doi: 10.1039/C7TC04685E
[36] Schmidbauer, S., Hohenleutner, A. & König, B. Chemical degradation in organic light-emitting devices: mechanisms and implications for the design of new materials. Adv. Mater. 25, 2114–2129 (2013). doi: 10.1002/adma.201205022
[37] Lin, N. et al. Molecular understanding of the chemical stability of organic materials for OLEDs: a comparative study on sulfonyl, phosphine-oxide, and carbonyl-containing host materials. J. Phys. Chem. C 118, 7569–7578 (2014). doi: 10.1021/jp412614k
[38] Lin, N. et al. Achilles heels of phosphine oxide materials for OLEDs: chemical stability and degradation mechanism of a bipolar phosphine oxide/carbazole hybrid host material. J. Phys. Chem. C 116, 19451–19457 (2012). doi: 10.1021/jp305415x
[39] Kusamoto, T. & Nishihara, H. Efficiency breakthrough for radical LEDs. Nature 563, 480–481 (2018). doi: 10.1038/d41586-018-07394-x
[40] Neese, F. The ORCA program system. Wires Comput. Mol. Sci. 2, 73–78 (2012). doi: 10.1002/wcms.81
[41] Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993). doi: 10.1063/1.464913
[42] Lee, C., Yang, W. T. & Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). doi: 10.1103/PhysRevB.37.785
[43] Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980). doi: 10.1139/p80-159
[44] Stephens, P. J. et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994). doi: 10.1021/j100096a001
[45] Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005). doi: 10.1039/b508541a
[46] Andrae, D. et al. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990). doi: 10.1007/BF01114537
[47] Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992). doi: 10.1063/1.463096
[48] Neese, F. et al. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree–Fock exchange. Chem. Phys. 356, 98–109 (2009). doi: 10.1016/j.chemphys.2008.10.036
[49] Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006). doi: 10.1039/b515623h
[50] Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). doi: 10.1002/jcc.21759
[51] Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004). doi: 10.1002/jcc.20078
[52] Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). doi: 10.1002/jcc.20495
[53] Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). doi: 10.1063/1.3382344