[1] Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081–1083 (1998). doi: 10.1364/OL.23.001081
[2] Bomzon, Z. E., Kleiner, V. & Hasman, E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001). doi: 10.1364/OL.26.001424
[3] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[4] Hsiao, H. H., Chu, C. H. & Tsai, D. P. Fundamentals and applications of metasurfaces. Small Methods 1, 1600064 (2017). doi: 10.1002/smtd.201600064
[5] Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). doi: 10.1126/science.aag2472
[6] Decker, M. et al. High‐efficiency dielectric huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015). doi: 10.1002/adom.201400584
[7] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644
[8] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4
[9] Wang, L. et al. Grayscale transparent metasurface holograms. Optica 3, 1504–1505 (2016). doi: 10.1364/OPTICA.3.001504
[10] Lin, D. M., Fan, P. Y., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213
[11] Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015). doi: 10.1038/nnano.2015.186
[12] Emani, N. K. et al. High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths. Appl. Phys. Lett. 111, 221101 (2017). doi: 10.1063/1.5007007
[13] Chen, B. H. et al. GaN metalens for pixel-level full-color routing at visible light. Nano. Lett. 17, 6345–6352 (2017). doi: 10.1021/acs.nanolett.7b03135
[14] Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016). doi: 10.1038/ncomms13682
[15] Collins, M. J. et al. Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4, 2582 (2013). doi: 10.1038/ncomms3582
[16] Park, K. W., Deutsch, Z., Li, J. J., Oron, D. & Weiss, S. Single molecule quantum-confined stark effect measurements of semiconductor nanoparticles at room temperature. ACS Nano 6, 10013–10023 (2012). doi: 10.1021/nn303719m
[17] Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano. Lett. 16, 5235–5240 (2016). doi: 10.1021/acs.nanolett.6b02326
[18] Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2015). doi: 10.1038/nphoton.2015.247
[19] Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018). doi: 10.1038/s41467-018-03155-6
[20] Tran, T. T. et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano. Lett. 17, 2634–2639 (2017). doi: 10.1021/acs.nanolett.7b00444
[21] Bohn, J. et al. Active tuning of spontaneous emission by mie-resonant dielectric metasurfaces. Nano. Lett. 18, 3461–3465 (2018). doi: 10.1021/acs.nanolett.8b00475
[22] Ha S. T., et al. Lasing action in active dielectric nanoantenna arrays. Preprint at https://arxiv.org/abs/1803.09993 (2018).
[23] Maguid, E. et al. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci. Appl. 6, e17027 (2017). doi: 10.1038/lsa.2017.27
[24] Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018). doi: 10.1126/science.aas9768