[1] Yu, N. F. et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[2] Hsu, W. L. et al. Vertical split-ring resonator based anomalous beam steering with high extinction ratio. Scientific Reports 5, 11226 (2015). doi: 10.1038/srep11226
[3] Lawrence, M. et al. High quality factor phase gradient metasurfaces. Nature Nanotechnology 15, 956-961 (2020). doi: 10.1038/s41565-020-0754-x
[4] Chen, C. et al. Spectral tomographic imaging with aplanatic metalens. Light:Science & Applications 8, 99 (2019).
[5] Hsiao, H. H. et al. Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Advanced Optical Materials 6, 1800031 (2018). doi: 10.1002/adom.201800031
[6] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nature Communications 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[7] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology 13, 220-226 (2018). doi: 10.1038/s41565-017-0034-6
[8] Lassalle, E. et al. Imaging properties of large field-of-view quadratic metalenses and their applications to fingerprint detection. ACS Photonics 8, 1457-1468 (2021). doi: 10.1021/acsphotonics.1c00237
[9] Wang, Y. J. et al. High-efficiency broadband achromatic metalens for near-ir biological imaging window. Nature Communications 12, 5560 (2021). doi: 10.1038/s41467-021-25797-9
[10] Chen, C. et al. Bifacial-metasurface-enabled pancake metalens with polarized space folding. Optica 9, 1314-1322 (2022). doi: 10.1364/OPTICA.474650
[11] Deng, Z. L. et al. Facile metagrating holograms with broadband and extreme angle tolerance. Light:Science & Applications 7, 78 (2018).
[12] Wang, D. P. et al. Broadband high‐efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small 15, 1900483 (2019). doi: 10.1002/smll.201900483
[13] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano letters 15, 3122-3127 (2015). doi: 10.1021/acs.nanolett.5b00184
[14] Qu, G. Y. et al. Reprogrammable meta-hologram for optical encryption. Nature Communications 11, 5484 (2020). doi: 10.1038/s41467-020-19312-9
[15] Guo, X. Y. et al. Stokes meta-hologram toward optical cryptography. Nature Communications 13, 6687 (2022). doi: 10.1038/s41467-022-34542-9
[16] Ren, H. R. et al. Metasurface orbital angular momentum holography. Nature Communications 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1
[17] Ahmed, H. et al. Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics 11, 941-956 (2022). doi: 10.1515/nanoph-2021-0746
[18] Dorrah, A. H. et al. Metasurface optics for on-demand polarization transformations along the optical path. Nature Photonics 15, 287-296 (2021). doi: 10.1038/s41566-020-00750-2
[19] Wu, P. C. et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Letters 17, 445-452 (2017). doi: 10.1021/acs.nanolett.6b04446
[20] Rubin, N. A. et al. Matrix fourier optics enables a compact full-stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839
[21] Liu, W. W. et al. Design strategies and applications of dimensional optical field manipulation based on metasurfaces. Advanced Materials 35, 2208884 (2023). doi: 10.1002/adma.202208884
[22] Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018-1021 (2020). doi: 10.1126/science.aba4597
[23] Sun, W. Z. et al. Lead halide perovskite vortex microlasers. Nature Communications 11, 4862 (2020). doi: 10.1038/s41467-020-18669-1
[24] Hwang, M. S. et al. Ultralow-threshold laser using super-bound states in the continuum. Nature Communications 12, 4135 (2021). doi: 10.1038/s41467-021-24502-0
[25] Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nature Nanotechnology 13, 1042-1047 (2018). doi: 10.1038/s41565-018-0245-5
[26] Yao, J. et al. Plasmonic anapole metamaterial for refractive index sensing. PhotoniX 3, 23 (2022). doi: 10.1186/s43074-022-00069-x
[27] Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105-1109 (2018). doi: 10.1126/science.aas9768
[28] Luo, Y. et al. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Letters 21, 5133-5142 (2021). doi: 10.1021/acs.nanolett.1c01114
[29] Wang, Y. F. et al. Electrical tuning of phase-change antennas and metasurfaces. Nature Nanotechnology 16, 667-672 (2021). doi: 10.1038/s41565-021-00882-8
[30] She, A. L. et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Science Advances 4, eaap9957 (2018). doi: 10.1126/sciadv.aap9957
[31] Liu, K. et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface. Light:Advanced Manufacturing 2, 19 (2021).
[32] Chen, M. K. et al. A meta-device for intelligent depth perception. Advanced Materials 35, e2107465 (2022).
[33] Chen, M. K. et al. Artificial intelligence in meta-optics. Chemical Reviews 122, 15356-15413 (2022). doi: 10.1021/acs.chemrev.2c00012
[34] Zhelyeznyakov, M. V., Brunton, S. & Majumdar, A. Deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces. ACS Photonics 8, 481-488 (2021).
[35] Bayati, E. et al. Inverse designed metalenses with extended depth of focus. ACS Photonics 7, 873-878 (2020). doi: 10.1021/acsphotonics.9b01703
[36] Liu, Z. C. et al. Generative model for the inverse design of metasurfaces. Nano Letters 18, 6570-6576 (2018). doi: 10.1021/acs.nanolett.8b03171
[37] Liu, X. Y. et al. Underwater binocular meta-lens. ACS Photonics 10, 2382-2389 (2023). doi: 10.1021/acsphotonics.2c01667
[38] Zhang, J. C. et al. A 6g meta-device for 3d varifocal. Science Advances 9, eadf8478 (2023). doi: 10.1126/sciadv.adf8478
[39] Liu, M. Z. et al. Broadband generation of perfect poincaré beams via dielectric spin-multiplexed metasurface. Nature Communications 12, 2230 (2021). doi: 10.1038/s41467-021-22462-z
[40] Tittl, A. et al. Metasurface-based molecular biosensing aided by artificial intelligence. Angewandte Chemie International Edition 58, 14810-14822 (2019). doi: 10.1002/anie.201901443
[41] Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nature Photonics 13, 390-396 (2019). doi: 10.1038/s41566-019-0394-6
[42] Luo, Y. et al. Metasurface-based abrupt autofocusing beam for biomedical applications. Small Methods 6, 2101228 (2022). doi: 10.1002/smtd.202101228
[43] Luo, Y. et al. Meta-lens light-sheet fluorescence microscopy for in vivo imaging. Nanophotonics 11, 1949-1959 (2022). doi: 10.1515/nanoph-2021-0748
[44] Xu, B. B. et al. Metalens-integrated compact imaging devices for wide-field microscopy. Advanced Photonics 2, 066004 (2020).
[45] Li, L. et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science 368, 1487-1490 (2020). doi: 10.1126/science.aba9779
[46] Huang, Y. W. et al. Gate-tunable conducting oxide metasurfaces. Nano Letters 16, 5319-5325 (2016). doi: 10.1021/acs.nanolett.6b00555
[47] Shrestha, S. et al. Broadband achromatic dielectric metalenses. Light:Science & Applications 7, 85 (2018).
[48] Zhao, M. X. et al. Phase characterisation of metalenses. Light:Science & Applications 10, 52 (2021).
[49] Xiao, X. J. et al. Large-scale achromatic flat lens by light frequency-domain coherence optimization. Light:Science & Applications 11, 323 (2022).
[50] She, A. L. et al. Large area metalenses: Design, characterization, and mass manufacturing. Optics Express 26, 1573-1585 (2018). doi: 10.1364/OE.26.001573
[51] Mayer, M. et al. Colloidal self-assembly concepts for plasmonic metasurfaces. Advanced Optical Materials 7, 1800564 (2019). doi: 10.1002/adom.201800564
[52] Makarov, S. V. et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. Acs Photonics 4, 728-735 (2017). doi: 10.1021/acsphotonics.6b00940
[53] Joo, W. J. et al. Metasurface-driven oled displays beyond 10, 000 pixels per inch. Science 370, 459-463 (2020). doi: 10.1126/science.abc8530
[54] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nature Nanotechnology 13, 227-232 (2018). doi: 10.1038/s41565-017-0052-4
[55] Devlin, R. C. et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proceedings of the National Academy of Sciences of the United States of America 113, 10473-10478 (2016).
[56] Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644
[57] Gigli, C. et al. Fundamental limitations of huygens’ metasurfaces for optical beam shaping. Laser & Photonics Reviews 15, 2000448 (2021).
[58] Cai, H. G. et al. Inverse design of metasurfaces with non-local interactions. npj Computational Materials 6, 116 (2020). doi: 10.1038/s41524-020-00369-5
[59] Chen, Y. et al. Observation of intrinsic chiral bound states in the continuum. Nature 613, 474-478 (2023). doi: 10.1038/s41586-022-05467-6
[60] Chen, C. C. et al. Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators. Advanced Optical Materials 3, 44-48 (2015). doi: 10.1002/adom.201400316
[61] Huang, L. J. et al. Ultrahigh-q guided mode resonances in an all-dielectric metasurface. Nature Communications 14, 3433 (2023). doi: 10.1038/s41467-023-39227-5
[62] Xia, Y. N. et al. Unconventional methods for fabricating and patterning nanostructures. Chemical Reviews 99, 1823-1848 (1999). doi: 10.1021/cr980002q
[63] Nguyen, N. T. Micromixers. 2nd edn. (Amsterdam: William Andrew Publishing, 2012), 113-161.
[64] Tseng, M. L. et al. Stress-induced 3d chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality. Advanced Optical Materials 7, 1900617 (2019). doi: 10.1002/adom.201900617
[65] Liu, Z. G. et al. Nano-kirigami with giant optical chirality. Science Advances 4, eaat4436 (2018). doi: 10.1126/sciadv.aat4436
[66] Yang, Q. Y. et al. Nonlinear bound states in the continuum of etchless lithium niobate metasurfaces. IEEE Photonics Journal 12, 4601209 (2020).
[67] Wang, C. et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Optics Express 25, 6963-6973 (2017). doi: 10.1364/OE.25.006963
[68] Fedotova, A. et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Letters 20, 8608-8614 (2020). doi: 10.1021/acs.nanolett.0c03290
[69] Zhang, M. et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536-1537 (2017). doi: 10.1364/OPTICA.4.001536
[70] Carletti, L. et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface. ACS Photonics 8, 731-737 (2021). doi: 10.1021/acsphotonics.1c00026
[71] Gorkunov, M. V. et al. Chiral visible light metasurface patterned in monocrystalline silicon by focused ion beam. Scientific Reports 8, 11623 (2018). doi: 10.1038/s41598-018-29977-4
[72] Gholipour, B. et al. Organometallic perovskite metasurfaces. Advanced Materials 29, 1604268 (2017). doi: 10.1002/adma.201604268
[73] Zhang, M. et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials. Advanced Science 5, 1800835 (2018). doi: 10.1002/advs.201800835
[74] Yan, C. et al. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces. ACS Photonics 6, 628-633 (2019). doi: 10.1021/acsphotonics.8b01119
[75] Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light:Science & Applications 8, 110 (2019).
[76] Duan, L. H. et al. Multi-focal laser direct writing through spatial light modulation guided by scalable vector graphics. Micromachines 14, 824 (2023). doi: 10.3390/mi14040824
[77] Zheng, J. et al. Highly anisotropic metasurface: A polarized beam splitter and hologram. Scientific Reports 4, 6491 (2014). doi: 10.1038/srep06491
[78] Berzinš, J. et al. Direct and high-throughput fabrication of mie-resonant metasurfaces via single-pulse laser interference. ACS Nano 14, 6138-6149 (2020). doi: 10.1021/acsnano.0c01993
[79] Min, S. Y. et al. Ultrasensitive molecular detection by imaging of centimeter-scale metasurfaces with a deterministic gradient geometry. Advanced Materials 33, 2100270 (2021). doi: 10.1002/adma.202100270
[80] Park, J. S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Letters 19, 8673-8682 (2019). doi: 10.1021/acs.nanolett.9b03333
[81] Zhang, L. D. et al. High-efficiency, 80 mm aperture metalens telescope. Nano Letters 23, 51-57 (2023). doi: 10.1021/acs.nanolett.2c03561
[82] Hu, T. et al. Cmos-compatible a-si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics 9, 823-830 (2020). doi: 10.1515/nanoph-2019-0470
[83] Yoon, G. et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano 15, 698-706 (2021). doi: 10.1021/acsnano.0c06968
[84] Yoon, G. et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nature Communications 11, 2268 (2020). doi: 10.1038/s41467-020-16136-5
[85] Chen, M. K. et al. Chiral-magic angle of nanoimprint meta-device. Nanophotonics 12, 2479-2490 (2023). doi: 10.1515/nanoph-2022-0733
[86] Einck, V. J. et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio tio2 meta-atoms. ACS Photonics 8, 2400-2409 (2021). doi: 10.1021/acsphotonics.1c00609
[87] Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nature Materials 22, 474-481 (2023). doi: 10.1038/s41563-023-01485-5
[88] Liu, H. et al. Switchable all-dielectric metasurfaces for full-color reflective display. Advanced Optical Materials 7, 1801639 (2019). doi: 10.1002/adom.201801639
[89] Baracu, A. M. et al. Silicon metalens fabrication from electron beam to uv-nanoimprint lithography. Nanomaterials 11, 2329 (2021). doi: 10.3390/nano11092329
[90] Dirdal, C. A. et al. Towards high-throughput large-area metalens fabrication using uv-nanoimprint lithography and bosch deep reactive ion etching. Optics Express 28, 15542-15561 (2020). doi: 10.1364/OE.393328
[91] Kim, J. et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser & Photonics Reviews 16, 2200098 (2022).
[92] Hulteen, J. C. & Van Duyne, R. P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. Journal of Vacuum Science & Technology A 13, 1553-1558 (1995).
[93] Fang, X. G. et al. Hierarchically ordered silicon metastructures from improved self-assembly-based nanosphere lithography. ACS Applied Materials & Interfaces 12, 12345-12352 (2020).
[94] Zheng, H. Y. et al. Large-scale metasurfaces based on grayscale nanosphere lithography. ACS Photonics 8, 1824-1831 (2021). doi: 10.1021/acsphotonics.1c00424
[95] Chen, K. et al. Moiré nanosphere lithography. ACS Nano 9, 6031-6040 (2015). doi: 10.1021/acsnano.5b00978
[96] Kosiorek, A. et al. Shadow nanosphere lithography: simulation and experiment. Nano Letters 4, 1359-1363 (2004). doi: 10.1021/nl049361t
[97] Nemiroski, A. et al. Engineering shadows to fabricate optical metasurfaces. ACS Nano 8, 11061-11070 (2014). doi: 10.1021/nn504214b
[98] Wang, H. et al. Two-photon polymerization lithography for optics and photonics: Fundamentals, materials, technologies, and applications. Advanced Functional Materials 33, 2214211 (2023). doi: 10.1002/adfm.202214211
[99] Liang, Y. et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Letters 20, 6351-6356 (2020). doi: 10.1021/acs.nanolett.0c01752
[100] McLamb, M. et al. Metasurfaces for the infrared spectral range fabricated using two-photon polymerization. Thin Solid Films 721, 138548 (2021). doi: 10.1016/j.tsf.2021.138548
[101] Wei, H. M. et al. Two-photon direct laser writing of inverse-designed free-form near-infrared polarization beamsplitter. Advanced Optical Materials 7, 1900513 (2019). doi: 10.1002/adom.201900513
[102] Yuan, D. D. et al. Large-scale laser nanopatterning of multiband tunable mid-infrared metasurface absorber. Advanced Optical Materials 10, 2200939 (2022). doi: 10.1002/adom.202200939
[103] Huang, L. Y. et al. Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces. Nature Communications 13, 5823 (2022). doi: 10.1038/s41467-022-33644-8
[104] Shalaginov, M. Y. et al. Single-element diffraction-limited fisheye metalens. Nano Letters 20, 7429-7437 (2020). doi: 10.1021/acs.nanolett.0c02783
[105] Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288-292 (2020). doi: 10.1126/science.aaz3985
[106] Semmlinger, M. et al. Vacuum ultraviolet light-generating metasurface. Nano Letters 18, 5738-5743 (2018). doi: 10.1021/acs.nanolett.8b02346
[107] Semmlinger, M. et al. Generating third harmonic vacuum ultraviolet light with a tio2 metasurface. Nano Letters 19, 8972-8978 (2019). doi: 10.1021/acs.nanolett.9b03961
[108] Zalogina, A. et al. High-harmonic generation from a subwavelength dielectric resonator. Science Advances 9, eadg2655 (2023). doi: 10.1126/sciadv.adg2655
[109] Tseng, M. L. et al. Vacuum ultraviolet nonlinear metalens. Science Advances 8, eabn5644 (2022). doi: 10.1126/sciadv.abn5644
[110] Gao, Y. S. et al. Nonlinear holographic all-dielectric metasurfaces. Nano letters 18, 8054-8061 (2018). doi: 10.1021/acs.nanolett.8b04311
[111] Ye, W. M. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nature Communications 7, 11930 (2016). doi: 10.1038/ncomms11930
[112] Schlickriede, C. et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Letters 20, 4370-4376 (2020). doi: 10.1021/acs.nanolett.0c01105
[113] Ossiander, M. et al. Extreme ultraviolet metalens by vacuum guiding. Science 380, 59-63 (2023). doi: 10.1126/science.adg6881
[114] Wang, J. et al. Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters. Analytical Chemistry 90, 10009-10015 (2018). doi: 10.1021/acs.analchem.8b02478
[115] Mao, Y. H. et al. A vacuum ultraviolet laser with a submicrometer spot for spatially resolved photoemission spectroscopy. Light:Science & Applications 10, 22 (2021).
[116] Wang, X. W. et al. Recent advances on optical vortex generation. Nanophotonics 7, 1533-1556 (2018). doi: 10.1515/nanoph-2018-0072
[117] Tan, H. Y. et al. A free‐space orbital angular momentum multiplexing communication system based on a metasurface. Laser & Photonics Reviews 13, 1800278 (2019).
[118] Zhang, K. et al. Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing. Laser & Photonics Reviews 15, 2000351 (2021).
[119] Petrov, N. V. et al. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light:Advanced Manufacturing 3, 640-652 (2022).
[120] Fan, Y. B. et al. Emerging trend in unconventional metasurfaces: From nonlinear, non-hermitian to nonclassical metasurfaces. ACS Photonics 9, 2872-2890 (2022). doi: 10.1021/acsphotonics.2c00816
[121] Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101-1104 (2018). doi: 10.1126/science.aat9042
[122] Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104-1108 (2018). doi: 10.1126/science.aat8196
[123] Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nature Photonics 15, 327-336 (2021). doi: 10.1038/s41566-021-00793-z
[124] Uenoyama, S. & Ota, R. 40 × 40 metalens array for improved silicon photomultiplier performance. ACS Photonics 8, 1548-1555 (2021).
[125] Arbabi, E. et al. Mems-tunable dielectric metasurface lens. Nature Communications 9, 812 (2018). doi: 10.1038/s41467-018-03155-6
[126] Kim, I. et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nature Communications 12, 3614 (2021). doi: 10.1038/s41467-021-23814-5
[127] Zhang, Y. F. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology 16, 661-666 (2021). doi: 10.1038/s41565-021-00881-9
[128] Sawant, R. et al. Mitigating chromatic dispersion with hybrid optical metasurfaces. Advanced Materials 31, 1805555 (2019). doi: 10.1002/adma.201805555
[129] Yang, R. et al. Immersive tuning the guided waves for multifunctional on-chip metaoptics. Laser & Photonics Reviews 16, 2200127 (2022).
[130] Ren, H. R. et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nature Communications 13, 4183 (2022). doi: 10.1038/s41467-022-31902-3