[1] Davies, P. F. & Tripathi, S. C. Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ. Res. 72, 239–245 (1993). doi: 10.1161/01.RES.72.2.239
[2] Schaller, M. D. & Parsons, J. T. Focal adhesion kinase and associated proteins. Curr. Opin. Cell Biol. 6, 705–710 (1994). doi: 10.1016/0955-0674(94)90097-3
[3] Yamada, K. M. & Geiger, B. Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 9, 76–85 (1997). doi: 10.1016/S0955-0674(97)80155-X
[4] Pelham, R. J. Jr. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997). doi: 10.1073/pnas.94.25.13661
[5] Turner, C. E. Paxillin and focal adhesion signalling. Nat. Cell Biol. 2, E231–E236 (2000). doi: 10.1038/35046659
[6] Gerthoffer, W. T. & Gunst, S. J. Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J. Appl. Physiol. 91, 963–972 (2001). doi: 10.1152/jappl.2001.91.2.963
[7] Schaller, M. D. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim. Biophys. Acta 1540, 1–21 (2001). doi: 10.1016/S0167-4889(01)00123-9
[8] Wehrle-Haller, B. & Imhof, B. A. The inner lives of focal adhesions. Trends Cell Biol. 12, 382–389 (2002). doi: 10.1016/S0962-8924(02)02321-8
[9] Chen, C. S., Alonso, J. L., Ostuni, E., Whitesides, G. M. & Ingber, D. E. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res Commun. 307, 355–361 (2003). doi: 10.1016/S0006-291X(03)01165-3
[10] Carragher, N. O. & Frame, M. C. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 14, 241–249 (2004). doi: 10.1016/j.tcb.2004.03.011
[11] Owen, G. R., Meredith, D. O., ap Gwynn, I. & Richards, R. G. Focal adhesion quantification - a new assay of material biocompatibility? Review. Eur. Cell Mater. 9, 85–96 (2005). discussion 85-96. doi: 10.22203/eCM.v009a10
[12] Green, J. A. & Yamada, K. M. Three-dimensional microenvironments modulate fibroblast signaling responses. Adv. Drug Deliv. Rev. 59, 1293–1298 (2007). doi: 10.1016/j.addr.2007.08.005
[13] Gallant, N. D., Michael, K. E. & García, A. J. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 16, 4329–4340 (2005). doi: 10.1091/mbc.e05-02-0170
[14] Wolfenson, H., Henis, Y. I., Geiger, B. & Bershadsky, A. D. The heel and toe of the cell's foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil. Cytoskelet. 66, 1017–1029 (2009). doi: 10.1002/cm.20410
[15] Atilgan, E. & Ovryn, B. Nucleation and growth of integrin adhesions. Biophys. J. 96, 3555–3572 (2009). doi: 10.1016/j.bpj.2009.02.023
[16] Frisch, S. M., Vuori, K., Ruoslahti, E. & Chan-Hui, P. Y. Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell Biol. 134, 793–799 (1996). doi: 10.1083/jcb.134.3.793
[17] Schlaepfer, D. D., Hauck, C. R. & Sieg, D. J. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 71, 435–478 (1999). doi: 10.1016/S0079-6107(98)00052-2
[18] Parsons, J. T., Martin, K. H., Slack, J. K., Taylor, J. M. & Weed, S. A. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19, 5606–5613 (2000). doi: 10.1038/sj.onc.1203877
[19] Petit, V. & Thiery, J. P. Focal adhesions: structure and dynamics. Biol. Cell 92, 477–494 (2000). doi: 10.1016/S0248-4900(00)01101-1
[20] Hauck, C. R., Hsia, D. A. & Schlaepfer, D. D. The focal adhesion kinase--a regulator of cell migration and invasion. IUBMB Life 53, 115–119 (2002). doi: 10.1080/15216540211470
[21] Wozniak, M. A., Modzelewska, K., Kwong, L. & Keely, P. J. Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 1692, 103–119 (2004). doi: 10.1016/j.bbamcr.2004.04.007
[22] McLean, G. W. et al. The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat. Rev. Cancer 5, 505–515 (2005). doi: 10.1038/nrc1647
[23] Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010). doi: 10.1038/nrm2957
[24] Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005). doi: 10.1038/nrm1549
[25] Damiano, J. S. & Dalton, W. S. Integrin-mediated drug resistance in multiple myeloma. Leuk. Lymphoma 38, 71–81 (2000). doi: 10.3109/10428190009060320
[26] Hazlehurst, L. A., Landowski, T. H. & Dalton, W. S. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene 22, 7396–7402 (2003). doi: 10.1038/sj.onc.1206943
[27] McCulloch, C. A., Downey, G. P. & El-Gabalawy, H. Signalling platforms that modulate the inflammatory response: new targets for drug development. Nat. Rev. Drug Discov. 5, 864–876 (2006). doi: 10.1038/nrd2109
[28] Zhao, X. & Guan, J. L. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv. Drug Deliv. Rev. 63, 610–615 (2011). doi: 10.1016/j.addr.2010.11.001
[29] Kim, D. H. & Wirtz, D. Focal adhesion size uniquely predicts cell migration. FASEB J. 27, 1351–1361 (2013). doi: 10.1096/fj.12-220160
[30] Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010). doi: 10.1038/nature09621
[31] Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009). doi: 10.1038/nrm2593
[32] Kusumi, A., Tsunoyama, T. A., Hirosawa, K. M. & Kasai, R. S. & Fujiwara, T. K. Tracking single molecules at work in living cells. Nat. Chem. Biol. 10, 524–532 (2014). doi: 10.1038/nchembio.1558
[33] Oakes, P. W. & Gardel, M. L. Stressing the limits of focal adhesion mechanosensitivity. Curr. Opin. Cell Biol. 30, 68–73 (2014). doi: 10.1016/j.ceb.2014.06.003
[34] Stehbens, S. J. & Wittmann, T. Analysis of focal adhesion turnover: a quantitative live-cell imaging example. Methods Cell Biol. 123, 335–346 (2014). doi: 10.1016/B978-0-12-420138-5.00018-5
[35] Deschout, H. et al. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat. Commun. 7, 13693 (2016). doi: 10.1038/ncomms13693
[36] Maziveyi, M. & Alahari, S. K. Cell matrix adhesions in cancer: the proteins that form the glue. Oncotarget 8, 48471–48487 (2017). doi: 10.18632/oncotarget.17265
[37] Legant, W. R. et al. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. 110, 881–886 (2013). doi: 10.1073/pnas.1207997110
[38] Colin-York, H. et al. Super-resolved traction force microscopy (STFM). Nano Lett. 16, 2633–2638 (2016). doi: 10.1021/acs.nanolett.6b00273
[39] Sarangi, B. R. et al. Coordination between intra- and extracellular forces regulates focal adhesion dynamics. Nano Lett. 17, 399–406 (2017). doi: 10.1021/acs.nanolett.6b04364
[40] Franz, C. M. & Muller, D. J. Analyzing focal adhesion structure by atomic force microscopy. J. Cell Sci. 118, 5315–5323 (2005). doi: 10.1242/jcs.02653
[41] von Bilderling, C., Caldarola, M., Masip, M. E., Bragas, A. V. & Pietrasanta, L. I. Monitoring in real-time focal adhesion protein dynamics in response to a discrete mechanical stimulus. Rev. Sci. Instrum. 88, 013703 (2017). doi: 10.1063/1.4973664
[42] Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010). doi: 10.1038/nature09198
[43] Figel, S. & Gelman, I. H. Focal adhesion kinase controls prostate cancer progression via intrinsic kinase and scaffolding functions. Anticancer Agents Med. Chem. 11, 607–616 (2011). doi: 10.2174/187152011796817646
[44] Brooks, J., Watson, A. & Korcsmaros, T. Omics approaches to identify potential biomarkers of inflammatory diseases in the focal adhesion complex. Genomics Proteomics Bioinformatics 15, 101–109 (2017). doi: 10.1016/j.gpb.2016.12.003
[45] Reticker-Flynn, N. E. et al. A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat. Commun. 3, 1122 (2012). doi: 10.1038/ncomms2128
[46] Zhou, T., Marx, K. A., Dewilde, A. H., McIntosh, D. & Braunhut, S. J. Dynamic cell adhesion and viscoelastic signatures distinguish normal from malignant human mammary cells using quartz crystal microbalance. Anal. Biochem. 421, 164–171 (2012). doi: 10.1016/j.ab.2011.10.052
[47] Smolyakov, G. et al. Elasticity, adhesion, and tether extrusion on breast cancer cells provide a signature of their invasive potential. ACS Appl. Mater. Interfaces 8, 27426–27431 (2016). doi: 10.1021/acsami.6b07698
[48] Berginski, M. E., Vitriol, E. A., Hahn, K. M. & Gomez, S. M. High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS ONE 6, e22025 (2011). doi: 10.1371/journal.pone.0022025
[49] Chen, W. et al. Photonic crystal enhanced microscopy for imaging of live cell adhesion. Analyst 138, 5886–5894 (2013). doi: 10.1039/c3an01541f
[50] Zhuo, Y. et al. Single nanoparticle detection using photonic crystal enhanced microscopy. Analyst 139, 1007–1015 (2014). doi: 10.1039/C3AN02295A
[51] Zhuo, Y. & Cunningham, B. T. Label-free biosensor imaging on photonic crystal surfaces. Sensors 15, 21613–21635 (2015). doi: 10.3390/s150921613
[52] Zhuo, Y. et al. Quantitative imaging of cell membrane-associated effective mass density using photonic crystal enhanced microscopy (PCEM). Prog. Quantum Electron. 50, 1–18 (2016). doi: 10.1016/j.pquantelec.2016.10.001
[53] Cunningham, B. T., Li, P., Lin, B. & Pepper, J. Colorimetric resonant reflection as a direct biochemical assay technique. Sens. Actuators B Chem. 81, 316–328 (2002). doi: 10.1016/S0925-4005(01)00976-5
[54] Cunningham, B. T. et al. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sens. Actuators B Chem. 85, 219–226 (2002). doi: 10.1016/S0925-4005(02)00111-9
[55] Cunningham, B. T. et al. Label-free assays on the BIND system. J. Biomol. Screen 9, 481–490 (2004). doi: 10.1177/1087057104267604
[56] Hessel, A. & Oliner, A. A. A new theory of Wood's anomalies on optical gratings. Appl. Opt. 4, 1275–1297 (1965). doi: 10.1364/AO.4.001275
[57] Yeh, P., Yariv, A. & Cho, A. Y. Optical surface waves in periodic layered media. Appl. Phys. Lett. 32, 104–105 (1978). doi: 10.1063/1.89953
[58] Mashev, L. & Popov, E. Diffraction efficiency anomalies of multicoated dielectric gratings. Opt. Commun. 51, 131–136 (1984). doi: 10.1016/0030-4018(84)90220-7
[59] Popov, E., Mashev, L. & Maystre, D. Theoretical study of the anomalies of coated dielectric gratings. Opt. Acta 33, 607–619 (1986). doi: 10.1080/713821994
[60] John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987). doi: 10.1103/PhysRevLett.58.2486
[61] Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987). doi: 10.1103/PhysRevLett.58.2059
[62] Meade, R. D., Brommer, K. D., Rappe, A. M. & Joannopoulos, J. D. Electromagnetic Bloch waves at the surface of a photonic crystal. Phys. Rev. B 44, 10961–10964 (1991). doi: 10.1103/PhysRevB.44.10961
[63] Magnusson, R. & Wang, S. S. New principle for optical filters. Appl. Phys. Lett. 61, 1022–1024 (1992). doi: 10.1063/1.107703
[64] Fan, S., Villeneuve, P. R., Joannopoulos, J. D. & Schubert, E. F. High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. 18, 3294–3297 (1997). doi: 10.1103/PhysRevLett.78.3294
[65] Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997). doi: 10.1038/386143a0
[66] Kanskar, M. et al. Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice. Appl. Phys. Lett. 70, 1438–1440 (1997). doi: 10.1063/1.118570
[67] Johnson, S. G., Fan, S., Villeneuve, P. R., Joannopoulos, J. D. & Kolodziejski, L. A. Guided modes in photonic crystal slabs. Phys. Rev. B 60, 5751–5758 (1999). doi: 10.1103/PhysRevB.60.5751
[68] Boroditsky, M. et al. Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals. J. Light Technol. 17, 2096–2112 (1999). doi: 10.1109/50.803000
[69] Painter, O., Vuckovic, J. & Scherer, A. Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. J. Opt. Soc. Am. B 16, 275–285 (1999). doi: 10.1364/JOSAB.16.000275
[70] Robertson, W. M. & May, M. S. Surface electromagnetic wave excitation on one-dimensional photonic band gap arrays. Appl. Phys. Lett. 74, 1800–1802 (1999). doi: 10.1063/1.123090
[71] Lin, S. Y., Chow, E., Johnson, S. G. & Joannopoulos, J. D. Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-um wavelength. Opt. Lett. 25, 1297–1299 (2000).
[72] Pacradouni, V. et al. Photonic band structure of dielectric membranes periodically textured in two dimensions. Phys. Rev. B 62, 4204–4207 (2000). doi: 10.1103/PhysRevB.62.4204
[73] Kuchinsky, S., Allan, D. C., Borrelli, N. F. & Cotteverte, J.-C. 3D localization in a channel waveguide in a photonic crystal with 2D periodicity. Opt. Commun. 175, 147–152 (2000). doi: 10.1016/S0030-4018(99)00768-3
[74] Benisty, H. et al. Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate. Appl. Phys. Lett. 76, 532–534 (2000). doi: 10.1063/1.125809
[75] Chutinan, A. & Noda, S. Waveguides and waveguide bends in two-dimensional photonic crystal slabs. Phys. Rev. B 62, 4488–4492 (2000). doi: 10.1103/PhysRevB.62.4488
[76] Joshi, B. et al. Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res. 68, 8210–8220 (2008). doi: 10.1158/0008-5472.CAN-08-0343
[77] Liu, J. N., Schulmerich, M. V., Bhargava, R. & Cunningham, B. T. Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging. Opt. Express 22, 18142–18158 (2014). doi: 10.1364/OE.22.018142
[78] Chuang, S. L. Physics of Photonic Devices, 2nd edn (John Wiley & Sons Inc, New Jersey, USA, 2009).
[79] Foreman, M. Cavity Coupled Photonic Crystal Enhanced Fluorescence for High Sensitivity Biomarker Detection. MSc thesis. University of Illinois at Urbana-Champaign (2016).
[80] Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light, 2nd edn, (Princeton University Press, Princeton, 2008).
[81] Chen, W. L. et al. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy. Analyst 139, 5954–5963 (2014). doi: 10.1039/C4AN01508H
[82] Backman, V. et al. Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999). doi: 10.1109/2944.796325
[83] Chandler, J. E., Cherkezyan, L., Subramanian, H. & Backman, V. Nanoscale refractive index fluctuations detected via sparse spectral microscopy. Biomed. Opt. Express 7, 883–893 (2016). doi: 10.1364/BOE.7.000883
[84] Miao, Q., Derbas, J., Eid, A., Subramanian, H. & Backman, V. Automated cell selection using support vector machine for application to spectral nanocytology. Biomed. Res Int. 2016, 6090912 (2016). doi: 10.1155/2016/6090912