[1] Zerrouki, D. et al. Chiral colloidal clusters. Nature 455, 380-382 (2008). doi: 10.1038/nature07237
[2] Chela-Flores, J. The origin of chirality in protein amino acids. Chirality 6, 165-168 (1994). doi: 10.1002/chir.530060302
[3] Frank, H., Nicholson, G. J. & Bayer, E. Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J. Chromatographic Sci. 15, 174-176 (1977). doi: 10.1093/chromsci/15.5.174
[4] Margolin, A. L. Enzymes in the synthesis of chiral drugs. Enzym. Microb. Technol. 15, 266-280 (1993). doi: 10.1016/0141-0229(93)90149-V
[5] Nguyen, L. A., He, H. & Pham-Huy, C. Chiral drugs: an overview. Int. J. Biomed. Sci. 2, 85-100 (2006).
[6] Agranat, I., Caner, H. & Caldwell, J. Putting chirality to work: the strategy of chiral switches. Nat. Rev. Drug Discov. 1, 753-768 (2002). doi: 10.1038/nrd915
[7] Brooks, W. H., Guida, W. C. & Daniel, K. G. The significance of chirality in drug design and development. Curr. Top. Medicinal Chem. 11, 760-770 (2011). doi: 10.2174/156802611795165098
[8] Dogariu, A., Sukhov, S. & Sáenz, J. Optically induced 'negative forces'. Nat. Photonics 7, 24-27 (2013). doi: 10.1038/nphoton.2012.315
[9] Gao, D. L. et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light.: Sci. Appl. 6, e17039 (2017). doi: 10.1038/lsa.2017.39
[10] Shi, Y. Z. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun. 9, 815 (2018). doi: 10.1038/s41467-018-03156-5
[11] Shi, Y. Z. et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci. Adv. 4, eaao0773 (2018). doi: 10.1126/sciadv.aao0773
[12] Ashkin, A. et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288-290 (1986). doi: 10.1364/OL.11.000288
[13] Shi, Y. Z. et al. Nanophotonic array-induced dynamic behavior for label-free shape-selective bacteria sieving. ACS Nano 13, 12070-12080 (2019). doi: 10.1021/acsnano.9b06459
[14] Swartzlander, G. A. Jr. et al. Stable optical lift. Nat. Photonics 5, 48-51 (2011). doi: 10.1038/nphoton.2010.266
[15] Antognozzi, M. et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 12, 731-735 (2016). doi: 10.1038/nphys3732
[16] Svak, V. et al. Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nat. Commun. 9, 5453 (2018). doi: 10.1038/s41467-018-07866-8
[17] Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015).
[18] Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014). doi: 10.1038/ncomms4300
[19] O'Connor, D. et al. Spin-orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun. 5, 5327 (2014). doi: 10.1038/ncomms6327
[20] Wang, S. B. & Chan, C. T. Lateral optical force on chiral particles near a surface. Nat. Commun. 5, 3307 (2014). doi: 10.1038/ncomms4307
[21] Hayat, A., Mueller, J. P. B. & Capasso, F. Lateral chirality-sorting optical forces. Proc. Natl Acad. Sci. USA 112, 13190-13194 (2015). doi: 10.1073/pnas.1516704112
[22] Chen, H. J. et al. Chirality sorting using two-wave-interference-induced lateral optical force. Phys. Rev. A 93, 053833 (2016). doi: 10.1103/PhysRevA.93.053833
[23] Zhang, T. H. et al. All-optical chirality-sensitive sorting via reversible lateral forces in interference fields. ACS Nano 11, 4292-4300 (2017). doi: 10.1021/acsnano.7b01428
[24] Diniz, K. et al. Negative optical torque on a microsphere in optical tweezers. Opt. Express 27, 5905-5917 (2019). doi: 10.1364/OE.27.005905
[25] Tkachenko, G. & Brasselet, E. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat. Commun. 5, 4491 (2014). doi: 10.1038/ncomms5491
[26] Kravets, N., Aleksanyan, A. & Brasselet, E. Chiral optical Stern-Gerlach Newtonian experiment. Phys. Rev. Lett. 122, 024301 (2019). doi: 10.1103/PhysRevLett.122.024301
[27] Spivak, B. & Andreev, A. V. Photoinduced separation of chiral isomers in a classical buffer gas. Phys. Rev. Lett. 102, 063004 (2009). doi: 10.1103/PhysRevLett.102.063004
[28] Li, Y., Bruder, C. & Sun, C. P. Generalized Stern-Gerlach effect for chiral molecules. Phys. Rev. Lett. 99, 130403 (2007). doi: 10.1103/PhysRevLett.99.130403
[29] Cao, T. & Qiu, Y. M. Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region. Nanoscale 10, 566-574 (2018). doi: 10.1039/C7NR05464E
[30] Zhao, Y. et al. Nanoscopic control and quantification of enantioselective optical forces. Nat. Nanotechnol. 12, 1055-1059 (2017). doi: 10.1038/nnano.2017.180
[31] Zhao, Y., Saleh, A. A. E. & Dionne, J. A. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers. ACS Photonics 3, 304-309 (2016). doi: 10.1021/acsphotonics.5b00574
[32] Tkachenko, G. & Brasselet, E. Optofluidic sorting of material chirality by chiral light. Nat. Commun. 5, 3577 (2014). doi: 10.1038/ncomms4577
[33] Tkachenko, G. & Brasselet, E. Spin controlled optical radiation pressure. Phys. Rev. Lett. 111, 033605 (2013). doi: 10.1103/PhysRevLett.111.033605
[34] Kravets, N. et al. Optical Enantioseparation of racemic emulsions of chiral microparticles. Phys. Rev. Appl. 11, 044025 (2019). doi: 10.1103/PhysRevApplied.11.044025
[35] Donato, M. G. et al. Polarization-dependent optomechanics mediated by chiral microresonators. Nat. Commun. 5, 3656 (2014). doi: 10.1038/ncomms4656
[36] Milonni, P. W. & Boyd, R. W. Momentum of light in a dielectric medium. Adv. Opt. Photonics 2, 519-553 (2010). doi: 10.1364/AOP.2.000519
[37] Ndukaife, J. C. et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotechnol. 11, 53-59 (2016). doi: 10.1038/nnano.2015.248
[38] Wang, K. et al. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2, 469 (2011). doi: 10.1038/ncomms1480
[39] Lin, S. Y., Schonbrun, E. & Crozier, K. Optical manipulation with planar silicon microring resonators. Nano Lett. 10, 2408-2411 (2010). doi: 10.1021/nl100501d
[40] Shi, Y. Z. et al. High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip. Lab A Chip 17, 2443-2450 (2017). doi: 10.1039/C7LC00484B
[41] Cipparrone, G. et al. Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device. Adv. Mater. 23, 5773-5778 (2011). doi: 10.1002/adma.201102828
[42] Qiu, C. W. et al. Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams. Light.: Sci. Appl. 4, e278 (2015). doi: 10.1038/lsa.2015.51
[43] Kajorndejnukul, V. et al. Linear momentum increase and negative optical forces at dielectric interface. Nat. Photonics 7, 787-790 (2013). doi: 10.1038/nphoton.2013.192
[44] Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by mie resonances. ACS Photonics 4, 2638-2649 (2017). doi: 10.1021/acsphotonics.7b01038
[45] Hernández, R. J. et al. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light. Sci. Rep. 5, 16926 (2015). doi: 10.1038/srep16926
[46] Hernández, R. J. et al. Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics. Liq. Cryst. Rev. 4, 59-79 (2016). doi: 10.1080/21680396.2016.1193065
[47] Duhr, S. & Braun, D. Why molecules move along a temperature gradient. Proc. Natl Acad. Sci. USA 103, 19678-19682 (2006). doi: 10.1073/pnas.0603873103
[48] Schermer, R. T. et al. Laser-induced thermophoresis of individual particles in a viscous liquid. Opt. Express 19, 10571-10586 (2011). doi: 10.1364/OE.19.010571
[49] Saxton, R. L. & Ranz, W. E. Thermal force on an aerosol particle in a temperature gradient. J. Appl. Phys. 23, 917-923 (1952). doi: 10.1063/1.1702330
[50] Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017). doi: 10.1103/PhysRevLett.119.243901
[51] Staude, I., Pertsch, T. & Kivshar, Y. S. All-dielectric resonant meta-optics lightens up. ACS Photonics 6, 802-814 (2019). doi: 10.1021/acsphotonics.8b01326
[52] Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288-292 (2020). doi: 10.1126/science.aaz3985
[53] Bouligand, Y. & Livolant, F. The organization of cholesteric spherulites. J. de. Phys. 45, 1899-1923 (1984). doi: 10.1051/jphys:0198400450120189900
[54] Seč, D. et al. Geometrical frustration of chiral ordering in cholesteric droplets. Soft Matter 8, 11982-11988 (2012). doi: 10.1039/c2sm27048j
[55] Chen, X. Y. & Li, T. C. A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem. Eng. J. 313, 1406-1414 (2017). doi: 10.1016/j.cej.2016.11.052
[56] Chen, X. Y. et al. Numerical and experimental investigation on micromixers with serpentine microchannels. Int. J. Heat. Mass Transf. 98, 131-140 (2016). doi: 10.1016/j.ijheatmasstransfer.2016.03.041