[1] Soref, R. Silicon photonics: a review of recent literature. Silicon 2, 1-6 (2010). doi: 10.1007/s12633-010-9034-y
[2] Thylén, L. & Wosinski, L. Integrated photonics in the 21st century. Photonics Research 2, 75-81 (2014). doi: 10.1364/PRJ.2.000075
[3] Liang, D. & Bowers, J. E. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light:Advanced Manufacturing 2, 5 (2021). doi: 10.37188/lam.2021.005
[4] Lin, H. T. et al. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7, 393-420 (2017). doi: 10.1515/nanoph-2017-0085
[5] Wang, J. & Long, Y. On-chip silicon photonic signaling and processing: a review. Science Bulletin 63, 1267-1310 (2018). doi: 10.1016/j.scib.2018.05.038
[6] Li, N. X. et al. A progress review on solid-state LiDAR and nanophotonics-based LiDAR sensors. Laser & Photonics Reviews 16, 2100511 (2022). doi: 10.1002/lpor.202100511
[7] Passaro, V. M. N. et al. Recent advances in integrated photonic sensors. Sensors 12, 15558-15598 (2012). doi: 10.3390/s121115558
[8] Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nature Photonics 15, 102-114 (2021). doi: 10.1038/s41566-020-00754-y
[9] Kita, D. M. et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nature Communications 9, 4405 (2018). doi: 10.1038/s41467-018-06773-2
[10] Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nature Reviews Physics 4, 194-208 (2022). doi: 10.1038/s42254-021-00398-z
[11] Cheben, P. et al. Subwavelength integrated photonics. Nature 560, 565-572 (2018). doi: 10.1038/s41586-018-0421-7
[12] Siew, S. Y. et al. Review of silicon photonics technology and platform development. Journal of Lightwave Technology 39, 4374-4389 (2021). doi: 10.1109/JLT.2021.3066203
[13] Ranno, L. et al. Integrated photonics packaging: challenges and opportunities. ACS Photonics 9, 3467-3485 (2022). doi: 10.1021/acsphotonics.2c00891
[14] Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Applied Sciences 6, 426 (2016). doi: 10.3390/app6120426
[15] Marchetti, R. et al. Coupling strategies for silicon photonics integrated chips [Invited]. Photonics Research 7, 201-239 (2019). doi: 10.1364/PRJ.7.000201
[16] Pavarelli, N. et al. Optical and electronic packaging processes for silicon photonic systems. Journal of Lightwave Technology 33, 991-997 (2015). doi: 10.1109/JLT.2015.2390675
[17] Lee, J. S. et al. Meeting the electrical, optical, and thermal design challenges of photonic-packaging. IEEE Journal of Selected Topics in Quantum Electronics 22, 8200209 (2016). doi: 10.1109/JSTQE.2016.2543150
[18] Li, L. et al. A fully-integrated flexible photonic platform for chip-to-chip optical interconnects. Journal of Lightwave Technology 31, 4080-4086 (2013). doi: 10.1109/JLT.2013.2285382
[19] Nezami, M. S. et al. Packaging and interconnect considerations in neuromorphic photonic accelerators. IEEE Journal of Selected Topics in Quantum Electronics 29, 6100311 (2023). doi: 10.1109/JSTQE.2022.3200604
[20] Mahajan, R. et al. Co-packaged photonics for high performance computing: status, challenges and opportunities. Journal of Lightwave Technology 40, 379-392 (2022). doi: 10.1109/JLT.2021.3104725
[21] Kopp, C. et al. Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging. IEEE Journal of Selected Topics in Quantum Electronics 17, 498-509 (2011). doi: 10.1109/JSTQE.2010.2071855
[22] Barwicz, T. et al. Automated, high-throughput photonic packaging. Optical Fiber Technology 44, 24-35 (2018). doi: 10.1016/j.yofte.2018.02.019
[23] Zhao, Y., Lin, L. H. & Sun, H. B. On-chip optical interconnection based on two-photon polymerization (Invited). Acta Photonica Sinica 51, 0851512 (2022). doi: 10.3788/gzxb20225108.0851512
[24] Liu, S. F. et al. 3D laser nanoprinting of functional materials. Advanced Functional Materials 2211280,doi: 10.1002/adfm.202211280 (in the press). doi: 10.1002/adfm.202211280
[25] Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics Letters 22, 132-134 (1997). doi: 10.1364/OL.22.000132
[26] Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Optics Express 20, 17667-17677 (2012). doi: 10.1364/OE.20.017667
[27] Adão, R. M. R. et al. Two-photon polymerization simulation and fabrication of 3D microprinted suspended waveguides for on-chip optical interconnects. Optics Express 30, 9623-9642 (2022). doi: 10.1364/OE.449641
[28] Lee, C. W. et al. Perpendicular coupling to in-plane photonics using arc waveguides fabricated via two-photon polymerization. Applied Physics Letters 100, 171102 (2012). doi: 10.1063/1.4704358
[29] Klein, S. et al. One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption. Applied Physics Letters 86, 211118 (2005). doi: 10.1063/1.1915525
[30] Schmidt, V. et al. Two-photon 3D lithography: A versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications. Journal of Laser Micro/Nanoengineering 2, 170-177 (2007). doi: 10.2961/jlmn.2007.03.0002
[31] Ishihara, J. et al. Fabrication of three-dimensional calixarene polymer waveguides using two-photon assisted polymerization. Applied Physics Letters 90, 033511 (2007). doi: 10.1063/1.2430480
[32] Schmid, G. et al. Gbit/s transmission via two-photon-absorption-inscribed optical waveguides on printed circuit boards. Electronics Letters 45, 219-221 (2009). doi: 10.1049/el:20093661
[33] Seidel, A. et al. Nanoimprinting of dielectric loaded surface-plasmon-polariton waveguides using masters fabricated by 2-photon polymerization technique. Journal of the Optical Society of America B 26, 810-812 (2009). doi: 10.1364/JOSAB.26.000810
[34] Serbin, J. & Gu, M. Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization. Optics Express 14, 3563-3568 (2006). doi: 10.1364/OE.14.003563
[35] Gonzalez‐Hernandez, D. et al. Micro-optics 3D printed via multi-photon laser lithography. Advanced Optical Materials 11, 2201701 (2023). doi: 10.1002/adom.202201701
[36] Moscoso-Martir, A. et al. Hybrid silicon photonics flip-chip laser integration with vertical self-alignment. 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). Singapore: IEEE, 2017, 1-4. doi: 10.1109/CLEOPR.2017.8118971
[37] Theurer, M. et al. Flip-chip integration of InP to SiN photonic integrated circuits. Journal of Lightwave Technology 38, 2630-2636 (2020). doi: 10.1109/JLT.2020.2972065
[38] Shimizu, T. et al. High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection. 8th IEEE International Conference on Group IV Photonics. London: IEEE, 2011, 181-183. doi: 10.1109/GROUP4.2011.6053756
[39] Schmid, M. D. et al. 3D direct laser writing of highly absorptive photoresist for miniature optical apertures. Advanced Functional Materials, 2211159 (in the press). doi: 10.1002/adfm.202211159
[40] Schmid, M. et al. 3D printed hybrid refractive/diffractive achromat and apochromat for the visible wavelength range. Optics Letters 46, 2485-2488 (2021). doi: 10.1364/OL.423196
[41] Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nature Photonics 12, 241-247 (2018). doi: 10.1038/s41566-018-0133-4
[42] Weiß, T. et al. Two-photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces. Advanced Engineering Materials 13, B264-B273 (2011). doi: 10.1002/adem.201080090
[43] Gittard, S. D. et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomedical Optics Express 2, 3167-3178 (2011). doi: 10.1364/BOE.2.003167
[44] O’Halloran, S. et al. Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Advanced Science 10, 2204072 (2023). doi: 10.1002/advs.202204072
[45] Otuka, A. J. G. et al. Two-photon polymerization: functionalized microstructures, micro-resonators, and bio-scaffolds. Polymers 13, 1994 (2021). doi: 10.3390/polym13121994
[46] Vyatskikh, A. et al. Additive manufacturing of 3D nano-architected metals. Nature Communications 9, 593 (2018). doi: 10.1038/s41467-018-03071-9
[47] Portela, C. M. et al. Supersonic impact resilience of nanoarchitected carbon. Nature Materials 20, 1491-1497 (2021). doi: 10.1038/s41563-021-01033-z
[48] Sharipova, M. I. et al. Effect of pyrolysis on microstructures made of various photoresists by two-photon polymerization: comparative study. Optical Materials Express 11, 371-384 (2021). doi: 10.1364/OME.416457
[49] Hohmann, J. K. et al. Three-dimensional μ-printing: an enabling technology. Advanced Optical Materials 3, 1488-1507 (2015). doi: 10.1002/adom.201500328
[50] Li, Y. et al. UV to NIR optical properties of IP-Dip, IP-L, and IP-S after two-photon polymerization determined by spectroscopic ellipsometry. Optical Materials Express 9, 4318-4328 (2019). doi: 10.1364/OME.9.004318
[51] Bauer, J. et al. Thermal post-curing as an efficient strategy to eliminate process parameter sensitivity in the mechanical properties of two-photon polymerized materials. Optics Express 28, 20362-20371 (2020). doi: 10.1364/OE.395986
[52] Rohbeck, N. et al. Effect of high strain rates and temperature on the micromechanical properties of 3D-printed polymer structures made by two-photon lithography. Materials & Design 195, 108977 (2020). doi: 10.1016/j.matdes.2020.108977
[53] Wang, S. H. et al. Sub-10-nm suspended nano-web formation by direct laser writing. Nano Futures 2, 025006 (2018). doi: 10.1088/2399-1984/aabb94
[54] Liu, Y. J. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nature Communications 10, 4340 (2019). doi: 10.1038/s41467-019-12360-w
[55] Schmid, M., Ludescher, D. & Giessen, H. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Optical Materials Express 9, 4564-4577 (2019). doi: 10.1364/OME.9.004564
[56] Rad, Z. F., Prewett, P. D. & Davies, G. J. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays. Microsystems & Nanoengineering 7, 71 (2021). doi: 10.1038/s41378-021-00298-3
[57] Gehring, H. et al. Broadband out-of-plane coupling at visible wavelengths. Optics Letters 44, 5089-5092 (2019). doi: 10.1364/OL.44.005089
[58] Yu, S. L. et al. Free-form micro-optics enabling ultra-broadband low-loss off-chip coupling. Laser & Photonics Reviews 17, 2200025 (2023). doi: 10.48550/arXiv.2112.14357
[59] Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Communications 7, 11763 (2016). doi: 10.1038/ncomms11763
[60] Hot Lithography® – UpNano – high-resolution 3D printing. at https://www.upnano.at/hot-lithography/.
[61] Bunea, A. I. et al. Micro 3D printing by two-photon polymerization: configurations and parameters for the nanoscribe system. Micro 1, 164-180 (2021). doi: 10.3390/micro1020013
[62] Hasegawa, T. , Oishi, K. & Maruo, S. Three-dimensional microstructuring of PDMS by two-photon microstereolithography. 2006 IEEE International Symposium on MicroNanoMechanical and Human Science. Nagoya: IEEE, 2006, 1-4, doi: 10.1109/MHS.2006.320261. doi: 10.1109/MHS.2006.320261
[63] Panusa, G. et al. Fabrication of sub-micron polymer waveguides through two-photon polymerization in polydimethylsiloxane. Polymers 12, 2485 (2020). doi: 10.3390/polym12112485
[64] Murata, N. & Nakamura, K. UV-curable adhesives for optical communications. The Journal of Adhesion 35, 251-267 (1991). doi: 10.1080/00218469108041012
[65] Lorenz, H. et al. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sensors and Actuators A:Physical 64, 33-39 (1998). doi: 10.1016/S0924-4247(98)80055-1
[66] Chen, M. H. et al. Low shrinkage light curable nanocomposite for dental restorative material. Dental Materials 22, 138-145 (2006). doi: 10.1016/j.dental.2005.02.012
[67] Teh, W. H. et al. Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography. Journal of Applied Physics 97, 054907 (2005). doi: 10.1063/1.1856214
[68] Tottori, S. et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Advanced Materials 24, 811-816 (2012). doi: 10.1002/adma.201103818
[69] Kumi, G. et al. High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab on a Chip 10, 1057-1060 (2010). doi: 10.1039/b923377f
[70] Streppel, U. et al. Formation of micro-optical structures by self-writing processes in photosensitive polymers. Applied Optics 42, 3570-3579 (2003). doi: 10.1364/AO.42.003570
[71] Maydykovskiy, A. I. et al. Two-photon laser lithography of active microcavity structures. JETP Letters 115, 261-266 (2022). doi: 10.1134/S0021364022100150
[72] Zuo, H. J. et al. Low loss, flexible single-mode polymer photonics. Optics Express 27, 11152-11159 (2019). doi: 10.1364/OE.27.011152
[73] Gonzalez-Hernandez, D. et al. Laser 3D printing of inorganic free-form micro-optics. Photonics 8, 577 (2021). doi: 10.3390/photonics8120577
[74] Kotz, F. et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Advanced Materials 33, 2006341 (2021). doi: 10.1002/adma.202006341
[75] Kotz, F. et al. Liquid glass: a facile soft replication method for structuring glass. Advanced Materials 28, 4646-4650 (2016). doi: 10.1002/adma.201506089
[76] Kotz, F. et al. Three-dimensional printing of transparent fused silica glass. Nature 544, 337-339 (2017). doi: 10.1038/nature22061
[77] Suter, M. et al. Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility. Biomedical Microdevices 15, 997-1003 (2013). doi: 10.1007/s10544-013-9791-7
[78] Masui, K. et al. Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization. Optics Express 19, 22786-22796 (2011). doi: 10.1364/OE.19.022786
[79] Marino, A. et al. Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Applied Materials & Interfaces 7, 25574-25579 (2015). doi: 10.1021/acsami.5b08764
[80] Xing, J. F., Zheng, M. L. & Duan, X. M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chemical Society Reviews 44, 5031-5039 (2015). doi: 10.1039/C5CS00278H
[81] Song, J. X. et al. From simple to architecturally complex hydrogel scaffolds for cell and tissue engineering applications: opportunities presented by two-photon polymerization. Advanced Healthcare Materials 9, 1901217 (2020). doi: 10.1002/adhm.201901217
[82] Xu, Y. A. et al. Deep ultraviolet hydrogel based on 2D cobalt-doped titanate. Light:Science & Applications 12, 1 (2023). doi: 10.1038/s41377-022-00991-6
[83] Ding, B. F. et al. A 2D material–based transparent hydrogel with engineerable interference colours. Nature Communications 13, 1212 (2022). doi: 10.1038/s41467-021-26587-z
[84] Saccone, M. A. et al. Additive manufacturing of micro-architected metals via hydrogel infusion. Nature 612, 685-690 (2022). doi: 10.1038/s41586-022-05433-2
[85] Oran, D. et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science 362, 1281-1285 (2018). doi: 10.1126/science.aau5119
[86] Lu, X. M. et al. Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition. Journal of Sol-Gel Science and Technology 95, 530-550 (2020). doi: 10.1007/s10971-020-05370-4
[87] Schwarz, C. M. et al. Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses. Proceedings of the SPIE 9759, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX. San Francisco: SPIE, 2016, 975916. doi:10.1117/12.2213030. doi: 10.1117/12.2213030
[88] Wong, S. et al. Direct laser writing of three- dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses. Advanced Materials 18, 265-269 (2006). doi: 10.1002/adma.200501973
[89] Cumming, B. P. et al. Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass. Optics Express 22, 689-698 (2014). doi: 10.1364/OE.22.000689
[90] Schwarz, C. M. et al. Structurally and morphologically engineered chalcogenide materials for optical and photonic devices. Journal of Optical Microsystems 1, 013502 (2021). doi: 10.1117/1.JOM.1.1.013502
[91] Zhang, Y. S. et al. Two-photon 3D printing in metal–organic framework single crystals. Small 18, 2200514 (2022). doi: 10.1002/smll.202200514
[92] Yu, J. C. et al. Two-photon responsive metal–organic framework. Journal of the American Chemical Society 137, 4026-4029 (2015). doi: 10.1021/ja512552g
[93] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121
[94] Liu, Y. et al. Deformation behavior of foam laser targets fabricated by two-photon polymerization. Nanomaterials 8, 498 (2018). doi: 10.3390/nano8070498
[95] Rosenbohm, J. et al. A multi-material platform for imaging of single cell-cell junctions under tensile load fabricated with two-photon polymerization. Biomedical Microdevices 24, 33 (2022). doi: 10.1007/s10544-022-00633-z
[96] Zhang, X. N. et al. Complex refractive indices measurements of polymers in visible and near-infrared bands. Applied Optics 59, 2337 (2020). doi: 10.1364/AO.383831
[97] Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America 55, 1205 (1965). doi: 10.1364/JOSA.55.001205
[98] Zhou, X. Q., Hou, Y. H. & Lin, J. Q. A review on the processing accuracy of two-photon polymerization. AIP Advances 5, 030701 (2015). doi: 10.1063/1.4916886
[99] Tanaka, T., Sun, H. B. & Kawata, S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system. Applied Physics Letters 80, 312-314 (2002). doi: 10.1063/1.1432450
[100] Guo, R. et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express 14, 810-816 (2006). doi: 10.1364/OPEX.14.000810
[101] Park, S. H. et al. Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization. Applied Physics Letters 87, 154108 (2005). doi: 10.1063/1.2103393
[102] Wu, D. et al. High numerical aperture microlens arrays of close packing. Applied Physics Letters 97, 31109 (2010). doi: 10.1063/1.3464979
[103] Aderneuer, T., Fernández, O. & Ferrini, R. Two-photon grayscale lithography for free-form micro-optical arrays. Optics Express 29, 39511-39520 (2021). doi: 10.1364/OE.440251
[104] Wang, H. et al. Toward near-perfect diffractive optical elements via nanoscale 3D printing. ACS Nano 14, 10452-10461 (2020). doi: 10.1021/acsnano.0c04313
[105] Wollhofen, R. et al. 120 nm resolution and 55 nm structure size in STED-lithography. Optics Express 21, 10831-10840 (2013). doi: 10.1364/OE.21.010831
[106] He, M. F. et al. 3D sub-diffraction printing by multicolor photoinhibition lithography: from optics to chemistry. Laser & Photonics Reviews 16, 2100229 (2022). doi: 10.1002/lpor.202100229
[107] He, M. F. et al. Single-color peripheral photoinhibition lithography of nanophotonic structures. PhotoniX 3, 25 (2022). doi: 10.1186/s43074-022-00072-2
[108] Yang, D. Y. et al. Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization. Applied Physics Letters 90, 013113 (2007). doi: 10.1063/1.2425022
[109] Chidambaram, N. et al. Selective surface smoothening of polymer microlenses by depth confined softening. Advanced Materials Technologies 2, 1700018 (2017). doi: 10.1002/admt.201700018
[110] Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876-883 (2018). doi: 10.1364/OPTICA.5.000876
[111] Blaicher, M. et al. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light:Science & Applications 9, 71 (2020). doi: 10.1038/s41377-020-0272-5
[112] Lindenmann, N. et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. Journal of Lightwave Technology 33, 755-760 (2015). doi: 10.1109/JLT.2014.2373051
[113] Gečys, P. et al. Ripple formation by femtosecond laser pulses for enhanced absorptance of stainless steel. Journal of Laser Micro/Nanoengineering 10, 129-133 (2015). doi: 10.2961/jlmn.2015.02.0004
[114] Xu, Y. L. et al. Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements. Scientific Reports 11, 16426 (2021). doi: 10.1038/s41598-021-95981-w
[115] Luan, E. X. et al. Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding. Scientific Reports 13, 1260 (2023). doi: 10.1038/s41598-023-27724-y
[116] Schumann, M. et al. Hybrid 2D–3D optical devices for integrated optics by direct laser writing. Light:Science & Applications 3, e175 (2014). doi: 10.1038/lsa.2014.56
[117] Yu, S. L. et al. Compact and fabrication-tolerant waveguide bends based on quadratic reflectors. Journal of Lightwave Technology 38, 4368-4373 (2020). doi: 10.1109/JLT.2020.2986576
[118] Gehring, H. et al. Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photonics 4, 10801 (2019). doi: 10.1063/1.5064401
[119] Luo, H. Z. et al. Low-loss and broadband fiber-to-chip coupler by 3D fabrication on a silicon photonic platform. Optics Letters 45, 1236-1239 (2020). doi: 10.1364/OL.386550
[120] Safronov, K. R. et al. Miniature Otto prism coupler for integrated photonics. Laser & Photonics Reviews 16, 2100542 (2022). doi: 10.1002/lpor.202100542
[121] Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52-58 (2021). doi: 10.1038/s41586-020-03070-1
[122] Brückerhoff-Plückelmann, F. et al. Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers. Nanophotonics 11, 4063-4072 (2022). doi: 10.1515/nanoph-2021-0752
[123] Yu, S. L. et al. Seamless hybrid-integrated interconnect NEtwork (SHINE). 2019 Optical Fiber Communications Conference and Exhibition. San Diego: IEEE, 2019, 1-3. doi:10.1364/OFC.2019.M4D.5. doi: 10.1364/OFC.2019.M4D.5
[124] Wang, X. X. et al. Design of hybrid plasmonic multi-quantum-well electro-reflective modulators towards <100 fJ/bit photonic links. IEEE Journal of Selected Topics in Quantum Electronics 27, 3400108 (2021). doi: 10.1109/JSTQE.2020.2987174
[125] Schneider, S. et al. Optical coherence tomography system mass-producible on a silicon photonic chip. Optics Express 24, 1573-1586 (2016). doi: 10.1364/OE.24.001573
[126] Zvagelsky, R. et al. Towards in-situ diagnostics of multi-photon 3D laser printing using optical coherence tomography. Light:Advanced Manufacturing 3, 466-480 (2022). doi: 10.37188/lam.2022.039
[127] Eich, A. et al. Single-photon emission from individual nanophotonic-integrated colloidal quantum dots. ACS Photonics 9, 551-558 (2022). doi: 10.1021/acsphotonics.1c01493
[128] Preuß, J. A. et al. Low-divergence hBN single-photon source with a 3D-printed low-fluorescence elliptical polymer microlens. Nano Letters 23, 407-413 (2023). doi: 10.1021/acs.nanolett.2c03001
[129] Terhaar, R. et al. Ultrafast quantum key distribution using fully parallelized quantum channels. Optics Express 31, 2675-2688 (2023). doi: 10.1364/OE.469053
[130] Wiste, T. et al. Additive manufactured foam targets for experiments on high-power laser–matter interaction. Journal of Applied Physics 133, 043101 (2023). doi: 10.1063/5.0121650
[131] Luo, H. Z. et al. Efficient four-way vertical coupler array for chip-scale space-division-multiplexing applications. Optics Letters 46, 4324-4327 (2021). doi: 10.1364/OL.434736
[132] Xu, Y. L. et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light: Advanced Manufacturing 4, 3 (2023). doi: 10.37188/lam.2023.003
[133] Maier, P. et al. 3D-printed facet-attached optical elements for connecting VCSEL and photodiodes to fiber arrays and multi-core fibers. Optics Express 30, 46602-46625 (2022). doi: 10.1364/OE.470676
[134] Maier, P. et al. Sub-kHz-linewidth external-cavity laser (ECL) with Si3N4 resonator used as a tunable pump for a Kerr frequency comb. Journal of Lightwave Technology 41, 3479-3490 (2023). doi: 10.1109/JLT.2023.3243471
[135] Chen, L. F. , Luo, H. Z. & Cai, X. L. 3D micro lenses for efficient edge coupling by two-photon lithography. Conference on Lasers and Electro-Optics. San Jose: OSA, 2021, doi:10.1364/CLEO_SI.2021.SM4C.6. doi: 10.1364/CLEO_SI.2021.SM4C.6
[136] Trappen, M. et al. 3D-printed optical probes for wafer-level testing of photonic integrated circuits. Optics Express 28, 37996-38007 (2020). doi: 10.1364/OE.405139
[137] Yu, S. L. et al. Optical free-form couplers for high-density integrated photonics (OFFCHIP): a universal optical interface. Journal of Lightwave Technology 38, 3358-3365 (2020). doi: 10.1109/JLT.2020.2971724
[138] Nair, S. P. et al. 3D printed fiber sockets for plug and play micro-optics. International Journal of Extreme Manufacturing 3, 015301 (2021). doi: 10.1088/2631-7990/abc674
[139] Wan, C. S. et al. Fiber-interconnect silicon chiplet technology for self-aligned fiber-to-chip assembly. IEEE Photonics Technology Letters 31, 1311-1314 (2019). doi: 10.1109/LPT.2019.2923206
[140] Yu, S. T., Gaylord, T. K. & Bakir, M. S. Fiber-array-to-chip interconnections with sub-micron placement accuracy via self-aligning chiplets. IEEE Photonics Technology Letters 34, 1023-1025 (2022). doi: 10.1109/LPT.2022.3199457
[141] Gordillo, O. A. J. et al. Plug-and-play fiber to waveguide connector. Optics Express 27, 20305-20310 (2019). doi: 10.1364/OE.27.020305
[142] Trautmann, A. et al. Scaffolds in a shell–a new approach combining one-photon and two-photon polymerization. Optics Express 26, 29659-29668 (2018). doi: 10.1364/OE.26.029659
[143] Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105-109 (2019). doi: 10.1126/science.aax8760
[144] Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nature Photonics 16, 784-791 (2022). doi: 10.1038/s41566-022-01081-0
[145] Maibohm, C. et al. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Scientific Reports 10, 8740 (2020). doi: 10.1038/s41598-020-64955-9
[146] Pisanello, M. et al. An open source three-mirror laser scanning holographic two-photon lithography system. PLoS One 17, e0265678 (2022). doi: 10.1371/journal.pone.0265678
[147] Obata, K. et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Optics Express 18, 17193-17200 (2010). doi: 10.1364/OE.18.017193
[148] Kleine, T. S. et al. 100th Anniversary of macromolecular science viewpoint: high refractive index polymers from elemental sulfur for infrared thermal imaging and optics. ACS Macro Letters 9, 245-259 (2020). doi: 10.1021/acsmacrolett.9b00948
[149] Roberts, G. et al. 3D-patterned inverse-designed mid-infrared metaoptics. Nature Communications 14, 2768 (2023). doi: 10.1038/s41467-023-38258-2
[150] Diamantopoulou, M., Karathanasopoulos, N. & Mohr, D. Stress-strain response of polymers made through two-photon lithography: Micro-scale experiments and neural network modeling. Additive Manufacturing 47, 102266 (2021). doi: 10.1016/j.addma.2021.102266
[151] Yang, Y. H. et al. Machine-learning-enabled geometric compliance improvement in two-photon lithography without hardware modifications. Journal of Manufacturing Processes 76, 841-849 (2022). doi: 10.1016/j.jmapro.2022.02.046
[152] Landis, E. N. & Keane, D. T. X-ray microtomography. Materials Characterization 61, 1305-1316 (2010). doi: 10.1016/j.matchar.2010.09.012