[1] Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). doi: 10.1103/PhysRevLett.99.236809
[2] Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008). doi: 10.1103/PhysRevB.77.235406
[3] Xu, X. D. et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014). doi: 10.1038/nphys2942
[4] Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012). doi: 10.1038/ncomms1882
[5] Xiao, J. et al. Nonlinear optical selection rule based on valley-exciton locking in monolayer WS2. Light Sci. Appl. 4, e366 (2015). doi: 10.1038/lsa.2015.139
[6] Zhu, B. R. et al. Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl Acad. Sci. USA 111, 11606–11611 (2014). doi: 10.1073/pnas.1406960111
[7] Wang, T. M. et al. Giant valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 20, 694–700 (2020). doi: 10.1021/acs.nanolett.9b04528
[8] Li, Z. P. et al. Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe2. Nat. Commun. 10, 2469 (2019). doi: 10.1038/s41467-019-10477-6
[9] Du, L. J. et al. Giant valley coherence at room temperature in 3R WS2 with broken inversion symmetry. Research 2019, 6494565 (2019).
[10] Autere, A. et al. Nonlinear optics with 2D layered materials. Adv. Mater. 30, 1705963 (2018). doi: 10.1002/adma.201705963
[11] Sun, Z. P., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 10, 227–238 (2016). doi: 10.1038/nphoton.2016.15
[12] Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016). doi: 10.1038/natrevmats.2016.55
[13] Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photonics 12, 451–460 (2018). doi: 10.1038/s41566-018-0204-6
[14] Mak, K. F. et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012). doi: 10.1038/nnano.2012.96
[15] Zeng, H. L. et al. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012). doi: 10.1038/nnano.2012.95
[16] Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photonics 11, 491–496 (2017). doi: 10.1038/nphoton.2017.121
[17] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). doi: 10.1126/science.1258122
[18] Lundt, N. et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019). doi: 10.1038/s41565-019-0492-0
[19] Kapitanova, P. V. et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun. 5, 3226 (2014). doi: 10.1038/ncomms4226
[20] Chen, J. H. et al. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light Sci. Appl. 8, 8 (2019). doi: 10.1038/s41377-018-0115-9
[21] Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013). doi: 10.1126/science.1233746
[22] Chen, H. T. et al. Valley-selective directional emission from a transition-metal dichalcogenide monolayer mediated by a plasmonic nanoantenna. Beilstein J. Nanotechnol. 9, 780–788 (2018). doi: 10.3762/bjnano.9.71
[23] Guddala, S. et al. Valley selective optical control of excitons in 2D semiconductors using a chiral metasurface. Optical Mater. Express 9, 536–543 (2019). doi: 10.1364/OME.9.000536
[24] Chen, P. G. et al. Chiral coupling of valley excitons and light through photonic spin–orbit interactions. Adv. Optical Mater. 8, 1901233 (2020). doi: 10.1002/adom.201901233
[25] Krasnok, A. & Alù, A. Valley-selective response of nanostructures coupled to 2D transition-metal dichalcogenides. Appl. Sci. 8, 1157 (2018). doi: 10.3390/app8071157
[26] Li, Z. W. et al. Tailoring MoS2 valley-polarized photoluminescence with super chiral near-field. Adv. Mater. 30, 1801908 (2018). doi: 10.1002/adma.201801908
[27] Gong, S. H. et al. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 359, 443–447 (2018).
[28] Sun, L. Y. et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photonics 13, 180–184 (2019). doi: 10.1038/s41566-019-0348-z
[29] Wu, Z. L. et al. Room-temperature active modulation of valley dynamics in a monolayer semiconductor through chiral Purcell effects. Adv. Mater. 31, 1904132 (2019). doi: 10.1002/adma.201904132
[30] Chervy, T. et al. Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons. ACS Photonics 5, 1281–1287 (2018). doi: 10.1021/acsphotonics.7b01032
[31] Hu, G. W. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photonics 13, 467–472 (2019). doi: 10.1038/s41566-019-0399-1
[32] Li, Z. W. et al. Tailoring MoS2 exciton–plasmon interaction by optical spin–orbit coupling. ACS Nano 11, 1165–1171 (2017). doi: 10.1021/acsnano.6b06834
[33] Zhen, B. et al. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014). doi: 10.1103/PhysRevLett.113.257401
[34] Zhang, Y. W. et al. Observation of polarization vortices in momentum space. Phys. Rev. Lett. 120, 186103 (2018). doi: 10.1103/PhysRevLett.120.186103
[35] Yang, Y. et al. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett. 113, 037401 (2014). doi: 10.1103/PhysRevLett.113.037401
[36] Xiao, Y. X. et al. Topological subspace-induced bound state in the continuum. Phys. Rev. Lett. 118, 166803 (2017). doi: 10.1103/PhysRevLett.118.166803
[37] Koshelev, K., Bogdanov, A. & Kivshar, Y. Meta-optics and bound states in the continuum. Sci. Bull. 64, 836–842 (2019). doi: 10.1016/j.scib.2018.12.003
[38] He, X. T. et al. A silicon-on-insulator slab for topological valley transport. Nat. Commun. 10, 872 (2019). doi: 10.1038/s41467-019-08881-z
[39] Shalaev, M. I. et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019). doi: 10.1038/s41565-018-0297-6
[40] Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 8, 406–411 (2014). doi: 10.1038/nphoton.2014.75
[41] Liang, Y. et al. Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach. Phys. Rev. B 84, 195119 (2011). doi: 10.1103/PhysRevB.84.195119
[42] Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017). doi: 10.1038/nature20799
[43] Wu, S. F. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015). doi: 10.1038/nature14290
[44] Fan, S. H. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002). doi: 10.1103/PhysRevB.65.235112
[45] Hsu, C. W. et al. Polarization state of radiation from a photonic crystal slab. https://arxiv.org/abs/1708.02197 (2017).
[46] Liu, W. Z. et al. Circularly polarized states spawning from bound states in the continuum. Phys. Rev. Lett. 123, 116104 (2019). doi: 10.1103/PhysRevLett.123.116104
[47] Carminati, R. & Greffet, J. J. Near-field effects in spatial coherence of thermal sources. Phys. Rev. Lett. 82, 1660–1663 (1999). doi: 10.1103/PhysRevLett.82.1660
[48] Shi, L. et al. Coherent fluorescence emission by using hybrid photonic–plasmonic crystals. Laser Photonics Rev. 8, 717–725 (2014). doi: 10.1002/lpor.201300196
[49] Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn. (Cambridge University Press, Cambridge, 1999).
[50] Mandel, L. & Wolf, E. Coherence properties of optical fields. Rev. Mod. Phys. 37, 231–287 (1965). doi: 10.1103/RevModPhys.37.231