[1] Niehörster, T. et al. Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat. Methods 13, 257-262 (2016). doi: 10.1038/nmeth.3740
[2] Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374-380 (2017). doi: 10.1038/nmeth.4218
[3] Pepperkok, R. & Ellenberg, J. High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7, 690-696 (2006). doi: 10.1038/nrm1979
[4] French, C. T. et al. Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc. Natl Acad. Sci. USA 108, 12095-12100 (2011). doi: 10.1073/pnas.1107183108
[5] Blauch, L. R. et al. Microfluidic guillotine for single-cell wound repair studies. Proc. Natl Acad. Sci. USA 114, 7283-7288 (2017). doi: 10.1073/pnas.1705059114
[6] Swidsinski, A. et al. Active Crohn's disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm. Bowel Dis. 14, 147-161 (2008). doi: 10.1002/ibd.20330
[7] Kawamoto, F. Rapid diagnosis of malaria by fluorescence microscopy with light microscope and interference filter. Lancet 337, 200-202 (1991). doi: 10.1016/0140-6736(91)92159-Y
[8] Chen, W. Q. et al. Selective, highly sensitive fluorescent probe for the detection of sulfur dioxide derivatives in aqueous and biological environments. Anal. Chem. 87, 609-616 (2015). doi: 10.1021/ac503281z
[9] Li, Q. Q. & Chen, B. L. Organic pollutant clustered in the plant cuticular membranes: visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy. Environ. Sci. Technol. 48, 4774-4781 (2014). doi: 10.1021/es404976c
[10] Burris, K. P. & Stewart, C. N. Jr. Fluorescent nanoparticles: sensing pathogens and toxins in foods and crops. Trends Food Sci.Technol. 28, 143-152 (2012). doi: 10.1016/j.tifs.2012.06.013
[11] Cropotova, J. et al. A novel fluorescence microscopy approach to estimate quality loss of stored fruit fillings as a result of browning. Food Chem. 194, 175-183 (2016). doi: 10.1016/j.foodchem.2015.07.146
[12] Chalfie, M. et al. Green fluorescent protein as a marker for gene expression. Science 263, 802-805 (1994). doi: 10.1126/science.8303295
[13] Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567-1572 (2004). doi: 10.1038/nbt1037
[14] Boehlke, C. et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115-1122 (2010). doi: 10.1038/ncb2117
[15] Warnatsch, A. et al. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349, 316-320 (2015). doi: 10.1126/science.aaa8064
[16] Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877-7882 (2002). doi: 10.1073/pnas.082243699
[17] Riahi, R. et al. Detection of mRNA in living cells by double-stranded locked nucleic acid probes. Analyst 138, 4777-4785 (2013). doi: 10.1039/c3an00722g
[18] Meena, G. G. et al. Integration of sample preparation and analysis into an optofluidic chip for multi-target disease detection. Lab Chip 18, 3678-3686 (2018). doi: 10.1039/C8LC00966J
[19] Mao, X. & Huang, T. J. Microfluidic diagnostics for developing world. Lab Chip 12, 1412-1416 (2013).
[20] Lee, S. et al. A smartphone platform for the quantification of vitamin D levels. Lab Chip 14, 1437-1442 (2014). doi: 10.1039/C3LC51375K
[21] Yu, H., Tan, Y. F. & Cunningham, B. T. Smartphone fluorescence spectroscopy. Anal. Chem. 86, 8805-8813 (2014). doi: 10.1021/ac502080t
[22] Liao, S. C. et al. Smart cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sens. Actuators B Chem. 229, 232-238 (2016). doi: 10.1016/j.snb.2016.01.073
[23] Song, J. Z. et al. Smartphone-based mobile detection platform for molecular diagnostics and spatiotemporal disease mapping. Anal. Chem. 90, 4823-4831 (2018). doi: 10.1021/acs.analchem.8b00283
[24] Zhao, Y. H. et al. Optofludic imaging: now and beyond. Lab Chip 13, 17-24 (2013). doi: 10.1039/C2LC90127G
[25] Zhao, C., Liu, Y., Zhao, Y., Fang, N. & Huang, T. J. A reconfigurable plasmofluidic lens. Nat. Commun. 4, 2305 (2013). doi: 10.1038/ncomms3305
[26] Quesada-González, D. & Merkoçi, A. Mobile phone-based biosensing: an emerging "diagnostic and communication" technology. Biosens. Bioelectron. 92, 549-562 (2017). doi: 10.1016/j.bios.2016.10.062
[27] D'Ambrosio, M. V. et al. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci. Transl. Med. 7, 286re4 (2015). doi: 10.1126/scitranslmed.aaa3480
[28] Kühnemund, M. et al. Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy. Nat. Commun. 8, 13913 (2017). doi: 10.1038/ncomms13913
[29] Zhang, D. M. & Liu, Q. J. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 75, 273-284 (2016). doi: 10.1016/j.bios.2015.08.037
[30] Göröcs, Z. et al. Quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media using mobile microscopy. ACS Nano 10, 8989-8999 (2016). doi: 10.1021/acsnano.6b05129
[31] Ekgasit, S. et al. Elastomeric PDMS planoconvex lenses fabricated by a confined sessile drop technique. ACS Appl. Mater. Interfaces 8, 20474-20482 (2016). doi: 10.1021/acsami.6b06305
[32] Ganguli, A. et al. Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and dengue at point-of-care. Biomed. Microdevices 19, 73 (2017). doi: 10.1007/s10544-017-0209-9
[33] Zhu, H. Y. et al. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11, 315-322 (2011). doi: 10.1039/C0LC00358A
[34] Zhu, H. Y. et al. Optofluidic fluorescent imaging cytometry on a cell phone. Anal. Chem. 83, 6641-6647 (2011). doi: 10.1021/ac201587a
[35] Wei, Q. S. et al. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7, 9147-9155 (2013). doi: 10.1021/nn4037706
[36] Kim, J. H. et al. A smartphone-based fluorescence microscope utilizing an external phone camera lens module. BioChip J. 9, 285-292 (2015). doi: 10.1007/s13206-015-9403-0
[37] Koydemir, H. C. et al. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy. Nanophotonics 6, 731-741 (2017). doi: 10.1515/nanoph-2017-0001
[38] Smith, Z. J. et al. Cell-phone-based platform for biomedical device development and education applications. PLoS ONE 6, e17150 (2011). doi: 10.1371/journal.pone.0017150
[39] Kobori, Y. et al. Novel device for male infertility screening with single-ball lens microscope and smartphone. Fertil. Steril. 106, 574-578 (2016). doi: 10.1016/j.fertnstert.2016.05.027
[40] Sung, Y., Campa, F. & Shih, W. C. Open-source do-it-yourself multi-color fluorescence smartphone microscopy. Biomed. Opt. Express 8, 5075-5086 (2017). doi: 10.1364/BOE.8.005075
[41] Sung, Y. L. et al. Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy. J. Biomed. Opt. 20, 047005 (2015). doi: 10.1117/1.JBO.20.4.047005
[42] Sung, Y. L. et al. Modeling the surface of fast-cured polymer droplet lenses for precision fabrication. Appl. Opt. 57, 10342-10347 (2018). doi: 10.1364/AO.57.010342
[43] Switz, N. A., D'Ambrosio, M. V. & Fletcher, D. A. Low-cost mobile phone microscopy with a reversed mobile phone camera lens. PLoS ONE 9, e95330 (2014). doi: 10.1371/journal.pone.0095330
[44] Mancuso, M., Cesarman, E. & Erickson, D. Detection of Kaposi's sarcoma associated herpesvirus nucleic acids using a smartphone accessory. Lab Chip 14, 3809-3816 (2014). doi: 10.1039/C4LC00517A
[45] Long, K. D. et al. Multimode smartphone biosensing: the transmission, reflection, and intensity spectral (TRI)-analyzer. Lab Chip 17, 3246-3257 (2017). doi: 10.1039/C7LC00633K
[46] Liu, X. Y., Lin, T. Y. & Lillehoj, P. B. Smartphones for cell and biomolecular detection. Ann. Biomed. Eng. 42, 2205-2217 (2014). doi: 10.1007/s10439-014-1055-z
[47] Fang, G. P. & Amirfazli, A. Understanding the edge effect in wetting: a thermodynamic approach. Langmuir 28, 9421-9430 (2012). doi: 10.1021/la301623h
[48] Bayramli, E. & Mason, S. G. Liquid spreading: edge effect for zero contact angle. J. Colloid Interface Sci. 66, 200-202 (1978). doi: 10.1016/0021-9797(78)90203-5
[49] Lubarda, V. A. & Talke, K. A. Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model. Langmuir 27, 10705-10713 (2011). doi: 10.1021/la202077w
[50] Weng, Y. R., Cui, Y. & Fang, J. Y. Biological functions of cytokeratin 18 in cancer. Mol. Cancer Res. 10, 485-493 (2012). doi: 10.1158/1541-7786.MCR-11-0222
[51] Wu, G. Y. et al. Complementary role of fibroblast growth factor 21 and cytokeratin 18 in monitoring the different stages of nonalcoholic fatty liver disease. Sci. Rep. 7, 5095 (2017). doi: 10.1038/s41598-017-05257-5
[52] Liu, S. S. et al. Glyceraldehyde-3-phosphate dehydrogenase promotes liver tumorigenesis by modulating phosphoglycerate dehydrogenase. Hepatology 66, 631-645 (2017).
[53] Zhong, X. Y. et al. CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell Rep. 24, 3207-3223 (2018). doi: 10.1016/j.celrep.2018.08.066
[54] Zhang, D. X., Zou, A. P. & Li, P. L. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. Am. J. Physiol. Heart Circ. Physiol. 284, H605-H612 (2003). doi: 10.1152/ajpheart.00697.2002
[55] Batandier, C. et al. Determination of mitochondrial reactive oxygen species: methodological aspects. J. Cell. Mol. Med. 6, 175-187 (2002). doi: 10.1111/j.1582-4934.2002.tb00185.x