[1] Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008). doi: 10.1038/nphoton.2008.47
[2] Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light 5, e16133 (2016). doi: 10.1038/lsa.2016.133
[3] Eaton, S. M. et al. High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser. J. Noncryst. Solids 357, 2387–2391 (2011). doi: 10.1016/j.jnoncrysol.2010.11.082
[4] Arriola, A. et al. Low bend loss waveguides enable compact, efficient 3D photonic chips. Opt. Express 21, 2978–2986 (2013). doi: 10.1364/OE.21.002978
[5] Chen, F. & De Aldana, J. R. V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 8, 251–275 (2014). doi: 10.1002/lpor.201300025
[6] Tan, D. Z. et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci. 76, 154–228 (2016). doi: 10.1016/j.pmatsci.2015.09.002
[7] Fernandez, T. T. et al. Bespoke photonic devices using ultrafast laser driven ion migration in glasses. Prog. Mater. Sci. 94, 68–113 (2018). doi: 10.1016/j.pmatsci.2017.12.002
[8] Gross, S. et al. Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics. Int. J. Appl. Glass Sci. 3, 332–348 (2012). doi: 10.1111/ijag.12005
[9] Lapointe, J. et al. Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape. Opt. Lett. 41, 203–206 (2016). doi: 10.1364/OL.41.000203
[10] Okhrimchuk, A. G. et al. Depressed cladding, buried waveguide laser formed in a YAG: Nd3+ crystal by femtosecond laser writing. Opt. Lett. 30, 2248–2250 (2005). doi: 10.1364/OL.30.002248
[11] Liao, Y. et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt. Lett. 33, 2281–2283 (2008). doi: 10.1364/OL.33.002281
[12] Burghoff, J. et al. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Appl. Phys. Lett. 89, 081108 (2006). doi: 10.1063/1.2338532
[13] Poumellec, B. et al. Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited]. Optical Mater. Express 1, 766–782 (2011). doi: 10.1364/OME.1.000766
[14] Zhang, B. L. et al. Macroscopic invisibility cloak for visible light. Phys. Rev. Lett. 106, 033901 (2011). doi: 10.1103/PhysRevLett.106.033901
[15] Cortés, L. R. et al. Full-field broadband invisibility through reversible wave frequency-spectrum control. Optica 5, 779–786 (2018). doi: 10.1364/OPTICA.5.000779
[16] Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). doi: 10.1126/science.1125907
[17] Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006). doi: 10.1126/science.1126493
[18] Charles, N. et al. Design of optically path-length-matched, three-dimensional photonic circuits comprising uniquely routed waveguides. Appl. Opt. 51, 6489–6497 (2012). doi: 10.1364/AO.51.006489
[19] Levinshtein, M., Rumyantsev, S. & Shur, M. S. Handbook Series on Semiconductor Parameters (Singapore New Jersey: World Scientific, 1996).
[20] Beresna, M., Gecevičius, M. & Kazansky, P. G. Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photonics 6, 293–339 (2014). doi: 10.1364/AOP.6.000293
[21] Sundaram, S. K. & Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 1, 217–224 (2002). doi: 10.1038/nmat767
[22] Chan, J. W. et al. Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt. Lett. 26, 1726–1728 (2001). doi: 10.1364/OL.26.001726
[23] Juodkazis, S. et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96, 166101 (2006). doi: 10.1103/PhysRevLett.96.166101
[24] Sakakura, M. et al. Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass. Opt. Express 15, 5674–5686 (2007). doi: 10.1364/OE.15.005674
[25] Lucarini, V. et al. Kramers–Kronig Relations in Optical Materials Research (Springer, Berlin, 2005).
[26] Davis, K. M. et al. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996). doi: 10.1364/OL.21.001729
[27] Hirao, K. & Miura, K. Writing waveguides and gratings in silica and related materials by a femtosecond laser. J. Noncryst. Solids 239, 91–95 (1998). doi: 10.1016/S0022-3093(98)00755-8
[28] Mao, S. S. et al. Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A 79, 1695–1709 (2004). doi: 10.1007/s00339-004-2684-0
[29] Streltsov, A. M. & Borrelli, N. F. Study of femtosecond-laser-written waveguides in glasses. J. Optical Soc. Am. B 19, 2496–2504 (2002). doi: 10.1364/JOSAB.19.002496
[30] Lucarini, V. et al. Kramers-Kronig Relations in Optical Materials Research. (Springer, Berlin, 2005).
[31] Korff, S. A. & Breit, G. Optical dispersion. Rev. Mod. Phys. 4, 471–503 (1932).
[32] Ghosh, G. Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Appl. Opt. 36, 1540–1546 (1997). doi: 10.1364/AO.36.001540
[33] Marple, D. T. F. Refractive index of ZnSe, ZnTe, and CdTe. J. Appl. Phys. 35, 539–542 (1964). doi: 10.1063/1.1713411
[34] Lin, G. et al. Different refractive index change behavior in borosilicate glasses induced by 1 kHz and 250 kHz femtosecond lasers. Optical Mater. Express 1, 724–731 (2011). doi: 10.1364/OME.1.000724
[35] Du, X. et al. Femtosecond laser induced space-selective precipitation of a deep-ultraviolet nonlinear BaAlBO3F2 crystal in glass. J. Noncryst. Solids 420, 17–20 (2015). doi: 10.1016/j.jnoncrysol.2014.12.023
[36] Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968). doi: 10.1016/0025-5408(68)90023-8
[37] Akimov, A. V. et al. Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures. Phys. Rev. Lett. 97, 037401 (2006). doi: 10.1103/PhysRevLett.97.037401
[38] Macdonald, J. R. et al. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe. Opt. Lett. 35, 4036–4038 (2010). doi: 10.1364/OL.35.004036
[39] Tatian, B. Fitting refractive-index data with the Sellmeier dispersion formula. Appl. Opt. 23, 4477–4485 (1984). doi: 10.1364/AO.23.004477
[40] Lapointe, J. et al. Making smart phones smarter with photonics. Opt. Express 22, 15473–15483 (2014). doi: 10.1364/OE.22.015473
[41] Lapointe, J. et al. Toward the integration of optical sensors in smartphone screens using femtosecond laser writing. Opt. Lett. 40, 5654–5657 (2015). doi: 10.1364/OL.40.005654
[42] Eaton, S. M. et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Lett. 13, 4708–4716 (2005).
[43] Jesacher, A. et al. Adaptive optics for direct laser writing with plasma emission aberration sensing. Opt. Express 18, 656–661 (2010). doi: 10.1364/OE.18.000656
[44] Lapointe, J. & Kashyap, R. A simple technique to overcome self-focusing, filamentation, supercontinuum generation, aberrations, depth dependence and waveguide interface roughness using fs laser processing. Sci. Rep. 7, 499 (2017). doi: 10.1038/s41598-017-00589-8
[45] Bérubé, J. P. et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire. Opt. Lett. 44, 37–40 (2019). doi: 10.1364/OL.44.000037
[46] Bérubé, J. P. et al. Tailoring the refractive index of Ge-S based glass for 3D embedded waveguides operating in the mid-IR region. Opt. Express 22, 26103–26116 (2014). doi: 10.1364/OE.22.026103
[47] Snyder, A. W. & Love, J. Optical Waveguide Theory. (Springer Science & Business Media, New York, 1983).
[48] Shimizu, T. et al. Photo-induced ESR and optical absorption edge shift in amorphous Ge-S films. Solid State Commun. 27, 223–227 (1978). doi: 10.1016/0038-1098(78)90023-6
[49] Tong, L. et al. Optical loss measurements in femtosecond laser written waveguides in glass. Opt. Commun. 259, 626–630 (2006). doi: 10.1016/j.optcom.2005.09.040
[50] Neuberger, M. Handbook of Electronic Materials: Volume 5: Group IV Semiconducting Materials. (Springer Science & Business Media, New York, 2012).
[51] Singh, J. & Shimakawa, K. Advances in Amorphous Semiconductors. (CRC Press, London, 2003).
[52] Hirabayashi, I., Morigaki, K. & Nitta, S. New evidence for defect creation by high optical excitation in glow discharge amorphous silicon. Jpn. J. Appl. Phys. 19, L357 (1980). doi: 10.1143/JJAP.19.L357
[53] Dersch, H., Stuke, J. & Beichler, J. Light‐induced dangling bonds in hydrogenated amorphous silicon. Appl. Phys. Lett. 38, 456–458 (1981). doi: 10.1063/1.92402
[54] Ogihara, C. et al. Lifetime and intensity of photoluminescence after light induced creation of dangling bonds in a-Si: H. J. Noncryst. Solids 299–302, 637–641 (2002).
[55] Morigaki, K. et al. Light-induced defect creation under pulsed subbandgap illumination in hydrogenated amorphous silicon. Philos. Mag. Lett. 83, 341–349 (2003). doi: 10.1080/0950083031000087457
[56] Morigaki, K. Physics of Amorphous Semiconductors. (World Scientific Press, London, 1999).
[57] Pfeiffer, G., Paesler, M. A. & Agarwal, S. C. Reversible photodarkening of amorphous arsenic chalcogens. J. Noncryst. Solids 130, 111–143 (1991). doi: 10.1016/0022-3093(91)90449-G
[58] Street, R. A. Non-radiative recombination in chalcogenide glasses. Solid State Commun. 24, 363–365 (1977). doi: 10.1016/0038-1098(77)90983-8
[59] Feltz, A. Amorphous Inorganic Materials and Glasses. (VCH, Weinheim, 1993).
[60] Stuke, J. Review of optical and electrical properties of amorphous semiconductors. J. Noncryst. Solids 4, 1–26 (1970). doi: 10.1016/0022-3093(70)90015-3
[61] Kasap, S. & Capper, P. Springer Handbook of Electronic and Photonic Materials. (Springer, Cham, 2017).
[62] Roberts, A. et al. Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy. Opt. Lett. 27, 2061–2063 (2002). doi: 10.1364/OL.27.002061
[63] Bélanger, E. et al. Comparative study of quantitative phase imaging techniques for refractometry of optical waveguides. Opt. Express 26, 17498–17510 (2018). doi: 10.1364/OE.26.017498