[1] Born, M. & Wolf, E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge: Elsevier, 2013).
[2] Stahl, H. P. Aspheric surface testing techniques. Optical Testing and Metrology III: Recent Advances in Industrial Optical Inspection. San Diego: SPIE, 1991.
[3] Goodwin, E. P. & Wyant, J. C. Field Guide to Interferometric Optical Testing (Bellingham: SPIE, 2006), 114.
[4] Burge, J. H. , Kim, D. W. & Martin, H. M. Process optimization for polishing large aspheric mirrors. Proceedings of SPIE 9151, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation. Montréal: SPIE, 2014, 91512R.
[5] Greisukh, G. I. et al. Design of the double-telecentric high-aperture diffractive-refractive objectives. Applied Optics 50, 3254-3258 (2011). doi: 10.1364/AO.50.003254
[6] Fallah, H. R. & Karimzadeh, A. Design of a lens system for micro lens lithography. International Optical Design ME17. Vancouver: Optica Publishing Group, 2006.
[7] Dhawan, R. et al. Design and development of linear optical fiber array based remote position sensor. Optik 139, 355-365 (2017). doi: 10.1016/j.ijleo.2017.04.036
[8] Ferrari, M. & Lemaitre, G. R. Active optics methods for highly aspheric mirrors: manufacturing the quaternary mirror of the OWL project. Proceedings of SPIE 4003, Optical Design, Materials, Fabrication, and Maintenance. Munich: SPIE, 2000.
[9] Grosskopf, M. J. et al. Modeling of aspheric, diverging hydrodynamic instability experiments on the national ignition facility. High Energy Density Physics 9, 439-447 (2013). doi: 10.1016/j.hedp.2013.04.003
[10] Malacara, D. Optical Shop Testing. 3rd edn. (Hoboken: John Wiley & Sons, 2007).
[11] Sloan, T. R. & Hopkins, R. E. Design of double gauss systems using aspherics. Applied Optics 6, 1911-1916 (1967). doi: 10.1364/AO.6.001911
[12] Yatsu, M. , Deguchi, M. & Maruyama, T. Zoom lens with aspherical lens for camcorder. Proceedings of SPIE 1354, 1990 International Lens Design Conference. Monterey: SPIE, 1991.
[13] Chand, T. et al. Design of refractive head-up display system using rotational symmetric aspheric optics. Optik 131, 515-519 (2017). doi: 10.1016/j.ijleo.2016.11.048
[14] Ito, A., Sato, D. & Yamada, N. Optical design and demonstration of microtracking CPV module with bi-convex aspheric lens array. Optics Express 26, A879-A891 (2018). doi: 10.1364/OE.26.00A879
[15] Herzberger, M. & Hoadley, H. O. The calculation of aspherical correcting surfaces. Journal of the Optical Society of America 36, 334-340 (1946). doi: 10.1364/JOSA.36.000334
[16] Wassermann, G. D. & Wolf, E. On the theory of aplanatic aspheric systems. Proceedings of the Physical Society. Section B 62, 2-8 (1949).
[17] Miyamoto, K. On the design of optical systems with an aspheric surface. Journal of the Optical Society of America 51, 21-22 (1961). doi: 10.1364/JOSA.51.000021
[18] Rayces, J. L. & Cheng, X. M. Numerical integration of the profile of aspheric surfaces. Proceedings of the International Optical Design Conference. Vancouver: Optica Publishing Group, 2006, ThB3.
[19] Gutiérrez, C. E. Aspherical lens design. Journal of the Optical Society of America A 30, 1719-1726 (2013). doi: 10.1364/JOSAA.30.001719
[20] Castillo-Santiago, G. et al. Analytic aspheric coefficients to reduce the spherical aberration of lens elements used in collimated light. Applied Optics 53, 4939-4946 (2014). doi: 10.1364/AO.53.004939
[21] Valencia-Estrada, J. C., Flores-Hernández, R. B. & Malacara-Hernández, D. Singlet lenses free of all orders of spherical aberration. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences 471, 20140608 (2015). doi: 10.1098/rspa.2014.0608
[22] Lozano-Rincón, N. D. C. & Valencia-Estrada, J. C. Paraboloid–aspheric lenses free of spherical aberration. Journal of Modern Optics 64, 1146-1157 (2017). doi: 10.1080/09500340.2016.1266708
[23] González-Acuña, R. G. & Chaparro-Romo, H. A. General formula for bi-aspheric singlet lens design free of spherical aberration. Applied Optics 57, 9341-9345 (2018). doi: 10.1364/AO.57.009341
[24] Valencia-Estrada, J. C. & García-Márquez, J. Freeform geometrical optics I: principles. Applied Optics 58, 9455-9464 (2019). doi: 10.1364/AO.58.009455
[25] González-Acuña, R. G., Chaparro-Romo, H. A. & Gutiérrez-Vega, J. C. General formula to design a freeform singlet free of spherical aberration and astigmatism. Applied Optics 58, 1010-1015 (2019). doi: 10.1364/AO.58.001010
[26] Valencia-Estrada, J. C. & García-Márquez, J. General formula to design a freeform singlet free of spherical aberration and astigmatism: comment. Applied Optics 59, 3422-3424 (2020). doi: 10.1364/AO.379238
[27] Rupp, V. The development of optical surfaces during the grinding process. Applied Optics 4, 743-748 (1965). doi: 10.1364/AO.4.000743
[28] Lubliner, J. & Nelson, J. E. Stressed mirror polishing. 1:a technique for producing nonaxisymmetric mirrors. Applied Optics 19, 2332-2340 (1980).
[29] Martin, H. M. et al. Progress in the stressed-lap polishing of a 1.8-m f/1 mirror. Proceedings of SPIE 1236, Advanced Technology Optical Telescopes IV. Tucson: SPIE, 1990.
[30] Smith, B. K. , Burge, J. H. & Martin, H. M. Fabrication of large secondary mirrors for astronomical telescopes. Proceedings of SPIE 1236, Optical Manufacturing and Testing II. San Diego: SPIE, 1997.
[31] Walker, D. D. et al. Novel CNC polishing process for control of form and texture on aspheric surfaces. Proceedings of SPIE 4767, Current Developments in Lens Design and Optical Engineering III. Seattle: SPIE, 2002.
[32] Yu, G. Y., Walker, D. & Li, H. Y. Implementing a grolishing process in Zeeko IRP machines. Applied Optics 51, 6637-6640 (2012). doi: 10.1364/AO.51.006637
[33] Harris, D. C. History of magnetorheological finishing. Proceedings of SPIE 8016, Window and Dome Technologies and Materials XII. Orlando, Florida, United States: SPIE, 2011, 80160N.
[34] Fähnle, O. W., Van Brug, H. & Frankena, H. J. Fluid jet polishing of optical surfaces. Applied Optics 37, 6771-6773 (1998). doi: 10.1364/AO.37.006771
[35] Allen, L. N. Progress in ion figuring large optics. Laser-Induced Damage in Optical Materials: 1994. International Society for Optics and Photonics, Boulder: SPIE, 1995.
[36] Council, N. R. Harnessing Light: Optical Science and Engineering for the 21st Century (Washington: National Academy Press, 1998).
[37] ISO. Optics and photonics — Preparation of drawings for optical elements and systems — Part 12: Aspheric surfaces (2019).
[38] Martin, H. M. et al. Fabrication and testing of the first 8.4-m off-axis segment for the giant magellan telescope. Proceedings of SPIE 7739, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation. San Diego: SPIE, 2010.
[39] Burge, J. H. , Fähnle, O. W. & Williamson R. The optical metrology system for cryogenic testing of the JWST primary mirror segments. Optical Manufacturing and Testing IX. San Diego: SPIE, 2011.
[40] Forbes, G. W. Shape specification for axially symmetric optical surfaces. Optics Express 15, 5218-5226 (2007). doi: 10.1364/OE.15.005218
[41] Cheng, X. M., Yang, Y. K. & Hao, Q. Aspherical surface profile fitting based on the relationship between polynomial and inner products. Optical Engineering 55, 015105 (2016). doi: 10.1117/1.OE.55.1.015105
[42] Forbes, G. W. Robust and fast computation for the polynomials of optics. Optics Express 18, 13851-13862 (2010). doi: 10.1364/OE.18.013851
[43] Forbes, G. W. Characterizing the shape of freeform optics. Optics Express 20, 2483-2499 (2012). doi: 10.1364/OE.20.002483
[44] Forbes, G. W. Fitting freeform shapes with orthogonal bases. Optics Express 21, 19061-19081 (2013). doi: 10.1364/OE.21.019061
[45] Ye, J. F. et al. Review of optical freeform surface representation technique and its application. Optical Engineering 56, 110901 (2017).
[46] Liu, J. L. & Yu, F. H. Descriptions of rotationally symmetric aspheres and analysis of their characteristics. Laser & Optoelectronics Progress 58, 0922001 (2021).
[47] Wyant, J. C. Interferometric testing of aspheric surfaces. Interferometric Metrology. San Diego: SPIE, 1986.
[48] Yuan, J. L. et al. Review on ultra-precision polishing technology of aspheric surface. Journal of Mechanical Engineering 48, 167-177 (2012).
[49] Shi, T. et al. Surface testing methods of aspheric optical elements. Chinese Optics 7, 26-46 (2014).
[50] Zhang, L. et al. Optical free-form surfaces testing technologies. Chinese Optics 10, 283-299 (2017). doi: 10.3788/co.20171003.0283
[51] Zhu, R. H., Sun, Y., & Shen, H. Progress and prospect of optical freeform surface measurement. Acta Optica Sinica 41, 0112001 (2021). doi: 10.3788/AOS202141.0112001
[52] Fortmeier, I. & Schulz, M. Comparison of form measurement results for optical aspheres and freeform surfaces. Measurement Science and Technology 33, 045010 (2022). doi: 10.1088/1361-6501/ac47bb
[53] Venzel’, V. I. et al. Use of coordinate measuring machines for the assembly of axisymmetric two-mirror objectives with aspherical mirrors. Journal of Optical Technology 86, 119-123 (2019). doi: 10.1364/JOT.86.000119
[54] Küng, A. et al. Application of a virtual coordinate measuring machine for measurement uncertainty estimation of aspherical lens parameters. Measurement Science and Technology 25, 094011 (2014). doi: 10.1088/0957-0233/25/9/094011
[55] Jing, H. W., King, C. & Walker, D. Simulation and validation of a prototype swing arm profilometer for measuring extremely large telescope mirror-segments. Optics Express 18, 2036-2048 (2010). doi: 10.1364/OE.18.002036
[56] Jing, H. W., King, C. & Walker, D. Measurement of influence function using swing arm profilometer and laser tracker. Optics Express 18, 5271-5281 (2010). doi: 10.1364/OE.18.005271
[57] Xiong, L. et al. Stitching swing arm profilometer test for large aperture aspherics. Chinese Optics Letters 17, 112201 (2019). doi: 10.3788/COL201917.112201
[58] Platt, B. C. & Shack, R. History and Principles of Shack-Hartmann Wavefront Sensing. Journal of Refractive Surgery 17, S573-S577 (2001).
[59] Rao, X. J. et al. Application of hartmann-shack sensor in aspheric process. Acta Optica Sinica 22, 491-494 (2002).
[60] Gugsa, S. A. & Davies, A. Monte Carlo analysis for the determination of the conic constant of an aspheric micro lens based on a scanning white light interferometric measurement. Proceedings of SPIE 5878, Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies II. San Diego: SPIE, 2005.
[61] Ceyhan, U. et al. Measurements of aberrations of aspherical lenses using experimental ray tracing. Proceedings of SPIE 8082, Optical Measurement Systems for Industrial Inspection VII. Munich: SPIE, 2011.
[62] Díaz-Uribe, R. & Campos-García, M. Null-screen testing of fast convex aspheric surfaces. Applied Optics 39, 2670-2677 (2000). doi: 10.1364/AO.39.002670
[63] Ceyhan, U. et al. Proceedings of SPIE 7389, Optical Measurement Systems for Industrial Inspection VI. Munich: SPIE, 2009, 73893L.
[64] Avendaño-Alejo, M. & Díaz-Uribe, R. Testing a fast off-axis parabolic mirror by using tilted null screens. Applied Optics 45, 2607-2614 (2006). doi: 10.1364/AO.45.002607
[65] Carmona-Paredes, L. & Díaz-Uribe, R. Geometric analysis of the null screens used for testing convex optical surfaces. Revista Mexicana De Física 53, 421-430 (2007).
[66] Campos-García, M., Bolado-Gómez, R. & Díaz-Uribe, R. Testing fast aspheric concave surfaces with a cylindrical null screen. Applied Optics 47, 849-859 (2008). doi: 10.1364/AO.47.000849
[67] Moreno-Oliva, V. I., Campos-García, M. & Díaz-Uribe, R. Improving the quantitative testing of fast aspherics with two-dimensional point shifting by only rotating a cylindrical null screen. Journal of Optics A:Pure and Applied Optics 10, 104029 (2008). doi: 10.1088/1464-4258/10/10/104029
[68] Campos-Garcia, M. & Granados-Agustin, F. S. Interferometric Ronchi test by using substructured gratings. Proceedings of SPIE 7390, Modeling Aspects in Optical Metrology II Munich, Germany: SPIE, 2009, 73901B.
[69] Campos-García, M. et al. Improving fast aspheric convex surface tests with dynamic null screens using LCDs. Applied Optics 50, 3101-3109 (2011). doi: 10.1364/AO.50.003101
[70] Rodríguez-Rodríguez, M. I., Jaramillo-Núñez, A. & Díaz-Uribe, R. Dynamic point shifting with null screens using three LCDs as targets for corneal topography. Applied Optics 54, 6698-6710 (2015). doi: 10.1364/AO.54.006698
[71] Aguirre-Aguirre, D. et al. Fast conical surfaces evaluation with null-screens and randomized algorithms. Applied Optics 56, 1370-1382 (2017). doi: 10.1364/AO.56.001370
[72] Avendaño-Alejo, M. et al. Quantitative evaluation of an off-axis parabolic mirror by using a tilted null screen. Applied Optics 48, 1008-1015 (2009). doi: 10.1364/AO.48.001008
[73] Forsythe, G. E. Generation and use of orthogonal polynomials for data-fitting with a digital computer. Journal of the Society for Industrial and Applied Mathematics 5, 74-88 (1957). doi: 10.1137/0105007
[74] Hilbig, D. et al. Fitting discrete aspherical surface sag data using orthonormal polynomials. Optics Express 23, 22404-22413 (2015). doi: 10.1364/OE.23.022404
[75] Wang, J. Y. & Silva, D. E. Wave-front interpretation with Zernike polynomials. Applied Optics 19, 1510-1518 (1980). doi: 10.1364/AO.19.001510
[76] Rimmer, M. P., King, C. M. & Fox, D. G. Computer program for the analysis of interferometric test data. Applied Optics 11, 2790-2796 (1972). doi: 10.1364/AO.11.002790
[77] Wang, Z. M., Qu, W. J. & Asundi, A. A simplified expression for aspheric surface fitting. Optik 140, 291-298 (2017). doi: 10.1016/j.ijleo.2017.02.094
[78] Zhang, Z. Y. Parameter estimation techniques: a tutorial with application to conic fitting. Image and Vision Computing 15, 59-76 (1997). doi: 10.1016/S0262-8856(96)01112-2
[79] Sun, W., McBride, J. W. & Hill, M. A new approach to characterising aspheric surfaces. Precision Engineering 34, 171-179 (2010). doi: 10.1016/j.precisioneng.2009.05.005
[80] Chen, Z. L. et al. Research of fitting algorithm for coefficients of rotational symmetry aspheric lens. Proceedings of SPIE 7283, 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. Chengdu: SPIE, 2009, 72834O.
[81] El-Hayek, N. et al. A new method for aspherical surface fitting with large-volume datasets. Precision Engineering 38, 935-947 (2014). doi: 10.1016/j.precisioneng.2014.06.004
[82] Offner, A. A null corrector for paraboloidal mirrors. Applied Optics 2, 153-155 (1963). doi: 10.1364/AO.2.000153
[83] Wyant, J. C. & Bennett, V. P. Using computer generated holograms to test aspheric wavefronts. Applied Optics 11, 2833-2839 (1972). doi: 10.1364/AO.11.002833
[84] MacGovern, A. J. & Wyant, J. C. Computer generated holograms for testing optical elements. Applied Optics 10, 619-624 (1971). doi: 10.1364/AO.10.000619
[85] Cheng, Y. Y. & Wyant, J. C. Two-wavelength phase shifting interferometry. Applied Optics 23, 4539-4543 (1984). doi: 10.1364/AO.23.004539
[86] Cheng, Y. Y. & Wyant, J. C. Multiple-wavelength phase-shifting interferometry. Applied Optics 24, 804-807 (1985). doi: 10.1364/AO.24.000804
[87] Greivenkamp, J. E. Sub-nyquist interferometry. Applied Optics 26, 5245-5258 (1987). doi: 10.1364/AO.26.005245
[88] Zhao, C. Y. & Burge, J. H. Stitching of off-axis sub-aperture null measurements of an aspheric surface. Proceedings of SPIE 7063, Interferometry XIV: Techniques and Analysis. San Diego: SPIE, 2008, 706316.
[89] Shen, H. et al. Design and fabrication of computer-generated holograms for testing optical freeform surfaces. Chinese Optics Letters 11, 032201 (2013). doi: 10.3788/COL201311.032201
[90] Chen, S. Y. et al. Subaperture stitching test of large steep convex spheres. Optics Express 23, 29047-29058 (2015). doi: 10.1364/OE.23.029047
[91] Liu, H. et al. Design of novel part-compensating lens used in aspheric testing. Proceedings of SPIE 5253, Fifth International Symposium on Instrumentation and Control Technology. Beijing: SPIE, 2003, 480-484.
[92] Hao, Q. et al. Simultaneous phase-shifting interferometer with a monitored spatial light modulator flexible reference mirror. Applied Optics 60, 1550-1557 (2021). doi: 10.1364/AO.414810
[93] Liu, D. et al. Non-null interferometric aspheric testing with partial null lens and reverse optimization. Proceedings of SPIE 7426, Optical Manufacturing and Testing VIII. San Diego: SPIE, 2009, 74260M.
[94] Liu, D. et al. Reverse optimization reconstruction of aspheric figure error in a non-null interferometer. Applied Optics 53, 5538-5546 (2014). doi: 10.1364/AO.53.005538
[95] Zhang, L. et al. Compact adaptive interferometer for unknown freeform surfaces with large departure. Optics Express 28, 1897-1913 (2020). doi: 10.1364/OE.380889
[96] Xue, S. et al. Adaptive null interferometric test using spatial light modulator for free-form surfaces. Optics Express 27, 8414-8428 (2019). doi: 10.1364/OE.27.008414
[97] Tian, C., Yang, Y. Y. & Zhuo, Y. M. Generalized data reduction approach for aspheric testing in a non-null interferometer. Applied Optics 51, 1598-1604 (2012). doi: 10.1364/AO.51.001598
[98] Dou, Y. M. et al. Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror. Journal of Optics 20, 065702 (2018). doi: 10.1088/2040-8986/aac1db
[99] Hao, Q. et al. Virtual interferometer calibration method of a non-null interferometer for freeform surface measurements. Applied Optics 55, 9992-10001 (2016). doi: 10.1364/AO.55.009992
[100] Hao, Q. et al. Vertex radius of curvature error measurement of aspheric surface based on slope asphericity in partial compensation interferometry. Opt Express 25, 18107-18121 (2017). doi: 10.1364/OE.25.018107
[101] Yang, Y. Y. et al. Determination of aspheric vertex radius of curvature in non-null interferometry. Applied Optics 54, 2838-2844 (2015). doi: 10.1364/AO.54.002838
[102] Xie, F., Hao, Q. & Zhu, Q. D. Best-fit spheric surface definition based on slope asphericity for aspheric surface. Acta Optica Sinica 30, 3197-3202 (2010). doi: 10.3788/AOS20103011.3197
[103] Hao, Q. et al. Interferometric measurement of high-order aspheric surface parameter errors based on a virtual-real combination iterative algorithm. Optics Express 29, 27014-27030 (2021). doi: 10.1364/OE.435252
[104] Hao, Q. et al. Partial compensation interferometry measurement system for parameter errors of conicoid surface. Review of Scientific Instruments 89, 063102 (2018). doi: 10.1063/1.5027146
[105] Yang, Y. Y. et al. Research of precision interference locating method for a partial null compensator at aspheric testing. Proceedings of SPIE 7426, Optical Manufacturing and Testing VIII. San Diego: SPIE, 2009, 74260R.
[106] Cheng, J. L. et al. Phase retrieval from the phase-shift moiré fringe patterns in simultaneous dual-wavelength interferometry. Journal of Optics 20, 025701 (2018). doi: 10.1088/2040-8986/aaa1cb
[107] Aguirre-Aguirre, D. et al. General equations for the null-screen test for aspherical surfaces with deformation coefficients. Applied Optics 57, 10230-10238 (2018). doi: 10.1364/AO.57.010230
[108] Diaz-Uribe, R. et al. Profile measurement of a conic surface, using a He–Ne laser and a nodal bench. Applied Optics 24, 2612-2615 (1985). doi: 10.1364/AO.24.002612
[109] Diaz-Uribe, R. & Cornejo-Rodriguez, A. Conic constant and paraxial radius of curvature measurements for conic surfaces. Applied Optics 25, 3731-3734 (1986). doi: 10.1364/AO.25.003731
[110] Wang, H. et al. A simple ray tracing method for measuring the vertex radius of curvature of an aspheric mirror. Optics Communications 232, 61-68 (2004). doi: 10.1016/j.optcom.2003.12.076
[111] Selberg, L. A. Radius measurement by interferometry. Optical Engineering 31, 1961-1966 (1992). doi: 10.1117/12.59905
[112] Schmitz, T. L. et al. Improving optical bench radius measurements using stage error motion data. Applied Optics 47, 6692-6700 (2008). doi: 10.1364/AO.47.006692
[113] Truax, B. Achieving precision radius metrology for large optics. Laser Focus World 50, 65-69 (2014).
[114] Pi, Y. & Reardon, P. J. Determining parent radius and conic of an off-axis segment interferometrically with a spherical reference wave. Optics Letters 32, 1063-1065 (2007). doi: 10.1364/OL.32.001063
[115] Li, R. G. Measuring method for the vertex radius of curvature of an asphere with a laser tracker. Chinese Optics Letters 13, S12201 (2015). doi: 10.3788/COL201513.S12201
[116] Chen, X. D. & Li, R. G. Research on geometric parameter measurement method using laser tracker in null lens asphere testing. Chinese Journal of Lasers 42, 242-248 (2015).
[117] Yang, J. M. et al. Laser differential confocal paraboloidal vertex radius measurement. Optics Letters 39, 830-833 (2014). doi: 10.1364/OL.39.000830
[118] Zhao, W. Q. et al. Laser differential confocal radius measurement. Optics Express 18, 2345-2360 (2010). doi: 10.1364/OE.18.002345
[119] Xiao, Y., Qiu, L. R. & Zhao, W. Q. Laser reflection differential confocal large-radius measurement for concave surfaces. Applied Optics 57, 6693-6698 (2018). doi: 10.1364/AO.57.006693