[1] Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004). doi: 10.1126/science.1096796
[2] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[3] Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012). doi: 10.1038/nmat3431
[4] Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012). doi: 10.1038/nmat3292
[5] Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photonics 11, 415–420 (2017). doi: 10.1038/nphoton.2017.96
[6] Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015). doi: 10.1038/nnano.2015.186
[7] Sartorello, G. et al. Ultrafast optical modulation of second- and third-harmonic generation from cut-disk-based metasurfaces. ACS Photonics 3, 1517–1522 (2016). doi: 10.1021/acsphotonics.6b00108
[8] Kundtz, N. & Smith, D. R. Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2009). doi: 10.1038/nmat2610
[9] Xu, H. X., Wang, G. M., Ma, K. & Cui, T. J. Superscatterer illusions without using complementary media. Adv. Opt. Mater. 2, 572–580 (2014). doi: 10.1002/adom.201400011
[10] Li, L. L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017). doi: 10.1038/s41467-017-00164-9
[11] Yang, H. H. et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 6, 35692 (2016). doi: 10.1038/srep35692
[12] Huang, C. et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Sci. Rep. 7, 42302 (2017). doi: 10.1038/srep42302
[13] Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014). doi: 10.1038/lsa.2014.99
[14] Liu, S. et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl. 5, e16076 (2016). doi: 10.1038/lsa.2016.76
[15] Liu, S. et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci. 3, 1600156 (2016). doi: 10.1002/advs.201600156
[16] Liu, S. & Cui, T. J. Concepts, working principles, and applications of coding and programmable metamaterials. Adv. Opt. Mater. 5, 1700624 (2017). doi: 10.1002/adom.201700624
[17] Zhang, L., Liu, S., Li, L. L. & Cui, T. J. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces. ACS Appl. Mater. Interfaces 9, 36447–36455 (2017). doi: 10.1021/acsami.7b12468
[18] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015). doi: 10.1038/nnano.2015.2
[19] Sun, S. L. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012). doi: 10.1021/nl3032668
[20] Headland, D. et al. Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface. ACS Photonics 3, 1019–1026 (2016). doi: 10.1021/acsphotonics.6b00102
[21] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[22] Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494
[23] Yang, Y. M. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014). doi: 10.1021/nl4044482
[24] Zhang, X. Q. et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv. Mater. 25, 4567–4572 (2013). doi: 10.1002/adma.201204850
[25] Wang, Q. et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci. Rep. 6, 32867 (2016). doi: 10.1038/srep32867
[26] Chu, C. H. et al. Active dielectric metasurface based on phase-change medium. Laser Photon Rev. 10, 986–994 (2016). doi: 10.1002/lpor.201600106
[27] Huang, Y. W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016). doi: 10.1021/acs.nanolett.6b00555
[28] Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016). doi: 10.1038/nphoton.2015.247
[29] Miao, Z. Q. et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X 5, 041027 (2015).
[30] Sautter, J. et al. Active tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015). doi: 10.1021/acsnano.5b00723
[31] Xu, H. X. et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci. Rep. 6, 27503 (2016). doi: 10.1038/srep27503
[32] Xu, H. X. et al. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci. Rep. 6, 38255 (2016). doi: 10.1038/srep38255
[33] Cong, L. Q. et al. Active multifunctional microelectromechanical system metadevices: applications in polarization control, wavefront deflection, and holograms. Adv. Opt. Mater. 5, 1600716 (2017). doi: 10.1002/adom.201600716
[34] Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009). doi: 10.1103/PhysRevLett.103.147401
[35] Gu, J. Q. et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, 1151 (2012). doi: 10.1038/ncomms2153
[36] Su, X. Q. et al. Active metasurface terahertz deflector with phase discontinuities. Opt. Express 23, 27152–27158 (2015). doi: 10.1364/OE.23.027152
[37] Zhang, S. et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012). doi: 10.1038/ncomms1908
[38] Yang, Y. M. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics 11, 390–395 (2017). doi: 10.1038/nphoton.2017.64
[39] Iyer, P. P., Butakov, N. A. & Schuller, J. A. Reconfigurable semiconductor phased-array metasurfaces. ACS Photonics 2, 1077–1084 (2015). doi: 10.1021/acsphotonics.5b00132
[40] Drevinskas, R., Beresna, M., Zhang, J. Y., Kazanskii, A. G. & Kazansky, P. G. Ultrafast laser-induced metasurfaces for geometric phase manipulation. Adv. Opt. Mater. 5, 1600575 (2017). doi: 10.1002/adom.201600575
[41] Cong, L. Q., Srivastava, Y. K., Solanki, A., Sum, T. C. & Singh, R. Perovskite as a platform for active flexible metaphotonic devices. ACS Photonics 4, 1595–1601 (2017). doi: 10.1021/acsphotonics.7b00191
[42] Yan, R. S., Arezoomandan, S., Sensale-Rodriguez, B. & Xing, H. G. Exceptional terahertz wave modulation in graphene enhanced by frequency selective surfaces. ACS Photonics 3, 315–323 (2016). doi: 10.1021/acsphotonics.5b00639
[43] Lei, D. Y. et al. Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure. ACS Photonics 2, 1306–1313 (2015). doi: 10.1021/acsphotonics.5b00249
[44] Ren, M. X. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011). doi: 10.1002/adma.201103162
[45] Ren, M. X., Plum, E., Xu, J. J. & Zheludev, N. I. Giant nonlinear optical activity in a plasmonic metamaterial. Nat. Commun. 3, 833 (2012). doi: 10.1038/ncomms1805
[46] Manjappa, M., Srivastava, Y. K., Cong, L. Q., Al-Naib, I. & Singh, R. Active photoswitching of sharp fano resonances in THz metadevices. Adv. Mater. 29, 1603355 (2017). doi: 10.1002/adma.201603355
[47] Nicholls, L. H. et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photonics 11, 628–633 (2017). doi: 10.1038/s41566-017-0002-6
[48] Niu, T. M. et al. Terahertz reflectarray as a polarizing beam splitter. Opt. Express 22, 16148–16160 (2014). doi: 10.1364/OE.22.016148
[49] Khorasaninejad, M., Zhu, W. & Crozier, K. B. Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2, 376–382 (2015). doi: 10.1364/OPTICA.2.000376
[50] Ding, X. M. et al. Ultrathin pancharatnam–berry metasurface with maximal cross-polarization efficiency. Adv. Mater. 27, 1195–1200 (2015). doi: 10.1002/adma.201405047
[51] Cong, L. Q. et al. A perfect metamaterial polarization rotator. Appl. Phys. Lett. 103, 171107 (2013). doi: 10.1063/1.4826536
[52] Kruk, S. et al. Invited article: broadband highly efficient dielectric metadevices for polarization control. APL Photonics 1, 030801 (2016). doi: 10.1063/1.4949007