[1] Cisneros, G. A. et al. Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chem. Rev. 116, 7501–7528 (2016). doi: 10.1021/acs.chemrev.5b00644
[2] Bellissent-Funel, M. C. et al. Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016). doi: 10.1021/acs.chemrev.5b00664
[3] Omta, A. W. et al. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301, 347–349 (2003). doi: 10.1126/science.1084801
[4] Fecko, C. J. et al. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003). doi: 10.1126/science.1087251
[5] Smith, J. D. et al. Energetics of hydrogen bond network rearrangements in liquid water. Science 306, 851–853 (2004). doi: 10.1126/science.1102560
[6] Stiopkin, I. V. et al. Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474, 192–195 (2011). doi: 10.1038/nature10173
[7] Richardson, J. O. et al. Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 351, 1310–1313 (2016). doi: 10.1126/science.aae0012
[8] Stokely, K. et al. Effect of hydrogen bond cooperativity on the behavior of water. Proc. Natl Acad. Sci. USA 107, 1301–1306 (2010). doi: 10.1073/pnas.0912756107
[9] Sharma, M., Resta, R. & Car, R. Intermolecular dynamical charge fluctuations in water: a signature of the H-bond network. Phys. Rev. Lett. 95, 187401 (2005). doi: 10.1103/PhysRevLett.95.187401
[10] Heyden, M. & Tobias, D. J. Spatial dependence of protein-water collective hydrogen-bond dynamics. Phys. Rev. Lett. 111, 218101 (2013). doi: 10.1103/PhysRevLett.111.218101
[11] Bakker, H. J. & Skinner, J. L. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010). doi: 10.1021/cr9001879
[12] Perakis, F. et al. Vibrational spectroscopy and dynamics of water. Chem. Rev. 116, 7590–7607 (2016). doi: 10.1021/acs.chemrev.5b00640
[13] Vij, J. K., Simpson, D. R. J. & Panarina, O. E. Far infrared spectroscopy of water at different temperatures: GHz to THz dielectric spectroscopy of water. J. Mol. Liq. 112, 125–135 (2004). doi: 10.1016/j.molliq.2003.12.014
[14] Torii, H. Intermolecular electron density modulations in water and their effects on the far-infrared spectral profiles at 6 THz. J. Phys. Chem. B 115, 6636–6643 (2011). doi: 10.1021/jp201695b
[15] Mizoguchi, K., Hori, Y. & Tominaga, Y. Study on dynamical structure in water and heavy water by low-frequency Raman spectroscopy. J. Chem. Phys. 97, 1961–1968 (1992). doi: 10.1063/1.463133
[16] Fukasawa, T. et al. Relation between dielectric and low-frequency Raman spectra of hydrogen-bond liquids. Phys. Rev. Lett. 95, 197802 (2005). doi: 10.1103/PhysRevLett.95.197802
[17] Rønne, C. & Keiding, S. R. Low frequency spectroscopy of liquid water using THz-time domain spectroscopy. J. Mol. Liq. 101, 199–218 (2002). doi: 10.1016/S0167-7322(02)00093-4
[18] Penkov, N. et al. Terahertz spectroscopy applied for investigation of water structure. J. Phys. Chem. B 119, 12664–12670 (2015). doi: 10.1021/acs.jpcb.5b06622
[19] Savolainen, J., Ahmed, S. & Hamm, P. Two-dimensional Raman-terahertz spectroscopy of water. Proc. Natl Acad. Sci. USA 110, 20402–20407 (2013). doi: 10.1073/pnas.1317459110
[20] Torre, R., Bartolini, P. & Righini, R. Structural relaxation in supercooled water by time-resolved spectroscopy. Nature 428, 296–299 (2004). doi: 10.1038/nature02409
[21] Turton, D. A. & Wynne, K. Structural relaxation in the hydrogen-bonding liquids N-methylacetamide and water studied by optical Kerr effect spectroscopy. J. Chem. Phys. 128, 154516 (2008). doi: 10.1063/1.2897432
[22] Taschin, A. et al. Evidence of two distinct local structures of water from ambient to supercooled conditions. Nat. Commun. 4, 2401 (2013). doi: 10.1038/ncomms3401
[23] Winkler, K., Lindner, J. & Vöhringer, P. Low-frequency depolarized Raman-spectral density of liquid water from femtosecond optical Kerr-effect measurements: lineshape analysis of restricted translational modes. Phys. Chem. Chem. Phys. 4, 2144–2155 (2002). doi: 10.1039/b200299j
[24] Sajadi, M., Wolf, M. & Kampfrath, T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles. Nat. Commun. 8, 14963 (2017). doi: 10.1038/ncomms14963
[25] Freysz, E. & Degert, J. Nonlinear optics: terahertz Kerr effect. Nat. Photon. 4, 131–132 (2010). doi: 10.1038/nphoton.2010.14
[26] Finneran, I. A. et al. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy. Proc. Natl Acad. Sci. USA 113, 6857–6861 (2016). doi: 10.1073/pnas.1605631113
[27] Kampfrath, T. et al. The nature of the dielectric response of methanol revealed by the terahertz Kerr effect. J. Phys. Chem. Lett. 9, 1279–1283 (2018). doi: 10.1021/acs.jpclett.7b03281
[28] Hoffmann, M. C. et al. Terahertz kerr effect. Appl. Phys. Lett. 95, 231105 (2009). doi: 10.1063/1.3271520
[29] Bodrov, S. et al. Terahertz induced optical birefringence in polar and nonpolar liquids. J. Chem. Phys. 147, 084507 (2017). doi: 10.1063/1.5000374
[30] Allodi, M. A., Finneran, I. A. & Blake, G. A. Nonlinear terahertz coherent excitation of vibrational modes of liquids. J. Chem. Phys. 143, 234204 (2015). doi: 10.1063/1.4938165
[31] Kampfrath, T., Wolf, M. & Sajadi, M. Anharmonic coupling between intermolecular motions of water revealed by terahertz Kerr effect. Preprint at https://arxiv.org/abs/1707.07622 (2017).
[32] Zalden, P. et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation. Nat. Commun. 9, 2142 (2018). doi: 10.1038/s41467-018-04481-5
[33] Novelli, F. et al. Strong anisotropy in liquid water upon librational excitation using terahertz laser fields. Preprint at https://arxiv.org/abs/1809.04261 (2018).
[34] Zasetsky, A. Y. Dielectric relaxation in liquid water: two fractions or two dynamics? Phys. Rev. Lett. 107, 117601 (2011). doi: 10.1103/PhysRevLett.107.117601
[35] Hale, G. M. & Querry, M. R. Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt. 12, 555–563 (1973). doi: 10.1364/AO.12.000555
[36] Afsar, M. N. & Hasted, J. B. Measurements of the optical constants of liquid H2O and D2O between 6 and 450 cm−1. J. Opt. Soc. Am. 67, 902–904 (1977). doi: 10.1364/JOSA.67.000902
[37] Maroulis, G. Hyperpolarizability of H2O revisited: accurate estimate of the basis set limit and the size of electron correlation effects. Chem. Phys. Lett. 289, 403–411 (1998). doi: 10.1016/S0009-2614(98)00439-4
[38] Kalmykov, Y. P. Matrix method calculation of the Kerr effect transient and ac stationary responses of arbitrary shaped macromolecules. J. Chem. Phys. 131, 074107 (2009). doi: 10.1063/1.3200942
[39] Coffey, W. T. & Kalmykov, Y. P. The Langevin Equation. 3rd edn. (World Scientific Publishing Company, Singapore City, 2012).
[40] Boyd, R. W. Nonlinear Optics. 2nd edn (Elsevier, Amsterdam, 2003).
[41] Demtröder, W. Laser Spectroscopy: Vol. 2 Experimental Techniques. (Springer, Berlin, Heidelberg, 2008).
[42] Levenson, M. Introduction to Nonlinear Laser Spectroscopy. (Elsevier, Amsterdam, 2012).
[43] Sekino, H. & Bartlett, R. J. Molecular hyperpolarizabilities. J. Chem. Phys. 98, 3022–3037 (1993). doi: 10.1063/1.464129
[44] Palese, S. et al. Femtosecond optical Kerr effect studies of water. J. Phys. Chem. 98, 6308–6316 (1994). doi: 10.1021/j100076a013
[45] Shalaby, M., Vicario, C. & Hauri, C. P. Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching. APL Photon. 2, 036106 (2017). doi: 10.1063/1.4978051
[46] Sajadi, M., Wolf, M. & Kampfrath, T. Terahertz-field-induced optical birefringence in common window and substrate materials. Opt. Express 23, 28985–28992 (2015). doi: 10.1364/OE.23.028985
[47] Ahmed, S., Savolainen, J. & Hamm, P. The effect of the Gouy phase in optical-pump-THz-probe spectroscopy. Opt. Express 22, 4256–4266 (2014). doi: 10.1364/OE.22.004256
[48] Amo, Y. & Tominaga, Y. Low-frequency Raman study of ethanol–water mixture. Chem. Phys. Lett. 320, 703–706 (2000). doi: 10.1016/S0009-2614(00)00304-3
[49] Fecko, C. J., Eaves, J. D. & Tokmakoff, A. Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr effect spectroscopy. J. Chem. Phys. 117, 1139–1154 (2002). doi: 10.1063/1.1485070
[50] Jin, Q. et al. Observation of broadband terahertz wave generation from liquid water. Appl. Phys. Lett. 111, 071103 (2017). doi: 10.1063/1.4990824
[51] Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 16, 1204–1212 (1999). doi: 10.1364/JOSAB.16.001204
[52] Leitenstorfer, A. et al. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Appl. Phys. Lett. 74, 1516–1518 (1999). doi: 10.1063/1.123601