[1] Leitenstorfer, A. et al. The 2023 terahertz science and technology roadmap. Journal of Physics D:Applied Physics 56, 223001 (2023). doi: 10.1088/1361-6463/acbe4c
[2] Mittleman, D. M. Perspective: terahertz science and technology. Journal of Applied Physics 122, 230901 (2017). doi: 10.1063/1.5007683
[3] Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nature Photonics 10, 371-379 (2016). doi: 10.1038/nphoton.2016.65
[4] Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nature Electronics 1, 622-635 (2018). doi: 10.1038/s41928-018-0173-2
[5] Shin, D. C. et al. Photonic comb-rooted synthesis of ultra-stable terahertz frequencies. Nature Communications 14, 790 (2023).
[6] Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nature Photonics 15, 516-522 (2021).
[7] Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nature Photonics 7, 977-981 (2013).
[8] Ummethala, S. et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nature Photonics 13, 519-524 (2019).
[9] Kumar, A. et al. Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication. Nature Communications 13, 5404 (2022).
[10] Jia, S. et al. Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications. Nature Communications 13, 1388 (2022).
[11] Yang, Y. H. et al. Terahertz topological photonics for on-chip communication. Nature Photonics 14, 446-451 (2020).
[12] Cao, Y. et al. Add drop multiplexers for terahertz communications using two-wire waveguide-based plasmonic circuits. Nature Communications 13, 4090 (2022).
[13] Yi, X. et al. Emerging terahertz integrated systems in silicon. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 3537-3550 (2021).
[14] Withayachumnankul, W. , Fujita, M. , & Nagatsum, T. Integrated silicon photonic crystals toward terahertz communications. Advanced Optical Materials 6, 1800401 (2018).
[15] Xie, J. Y. et al. Terahertz-frequency temporal differentiator enabled by a high-Q resonator. Optics Express 28, 7898-7905 (2020).
[16] Yuan, S. X. et al. On-chip terahertz isolator with ultrahigh isolation ratios. Nature Communications 12, 5570 (2021).
[17] Deng, W. T. et al. On-chip polarization- and frequency-division demultiplexing for multidimensional terahertz communication. Laser & Photonics Reviews 16, 2200136 (2022).
[18] Zhou, S. Y. et al. Photonics-inspired terahertz whispering gallery mode resonator waveguide on silicon platform. Applied Physics Letters 119, 171103 (2021).
[19] Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349-354 (2018).
[20] Hillger, P. et al. Toward mobile integrated electronic systems at THz frequencies. Journal of Infrared,Millimeter,and Terahertz Waves 41, 846-869 (2020).
[21] Zhu, M. et al. Ultra-wideband fiber-THz-fiber seamless integration communication system toward 6G: architecture, key techniques, and testbed implementation. Science China Information Sciences 66, 113301 (2023).
[22] Zhao, L. et al. Demonstration of 5.12-Tbps THz-over-fiber transmission in 80 channel WDM system. Science China Technological Sciences 66, 1480-1482 (2023).
[23] Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207-216 (2020). doi: 10.1038/s41586-020-2764-0
[24] Solli, D. R. & Jalali, B. Analog optical computing. Nature Photonics 9, 704-706 (2015). doi: 10.1038/nphoton.2015.208
[25] Ferrera, M. et al. On-chip CMOS-compatible all-optical integrator. Nature Communications 1, 29 (2010).
[26] Zhu, T. F. et al. Topological optical differentiator. Nature Communications 12, 680 (2021).
[27] Zangeneh-Nejad, F. & Fleury, R. Topological analog signal processing. Nature Communications 10, 2058 (2019). doi: 10.1038/s41467-019-10086-3
[28] Sol, J., Smith, D. R. & Del Hougne, P. Meta-programmable analog differentiator. Nature Communications 13, 1713 (2022). doi: 10.1038/s41467-022-29354-w
[29] Herter, A. et al. Terahertz waveform synthesis in integrated thin-film lithium niobate platform. Nature Communications 14, 11 (2023).
[30] Wang, Z. et al. On-chip wavefront shaping with dielectric metasurface. Nature Communications 10, 3547 (2019).
[31] Gingras, L. & Cooke, D. G. Direct temporal shaping of terahertz light pulses. Optica 4, 1416-1420 (2017). doi: 10.1364/OPTICA.4.001416
[32] Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78-85 (2023).
[33] He, L. N. et al. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nature Nanotechnology 6, 428-432 (2011). doi: 10.1038/nnano.2011.99
[34] Foreman, M. R., Swaim, J. D. & Vollmer, F. Whispering gallery mode sensors. Advances in Optics and Photonics 7, 168-240 (2015). doi: 10.1364/AOP.7.000168
[35] Zhang, W. F. & Yao, J. P. Photonic integrated field-programmable disk array signal processor. Nature Communications 11, 406 (2020). doi: 10.1038/s41467-019-14249-0
[36] Liu, F. F. et al. Compact optical temporal differentiator based on silicon microring resonator. Optics Express 16, 15880-15886 (2008).
[37] Tan, S. S. et al. All-optical computation system for solving differential equations based on optical intensity differentiator. Optics Express 21, 7008-7013 (2013).
[38] Hou, J., Dong, J. J. & Zhang, X. L. Reconfigurable symmetric pulses generation using on-chip cascaded optical differentiators. Optics Express 24, 20529-20541 (2016). doi: 10.1364/OE.24.020529
[39] Gao, W. J. et al. Characteristics of effective-medium-clad dielectric waveguides. IEEE Transactions on Terahertz Science and Technology 11, 28-41 (2021).
[40] Zhang, J. Q. & Grischkowsky, D. Whispering-gallery-mode cavity for terahertz pulses. Journal of the Optical Society of America B 20, 1894-1904 (2003). doi: 10.1364/JOSAB.20.001894
[41] Vogt, D. W. & Leonhardt, R. Terahertz whispering gallery mode bubble resonator. Optica 4, 809-812 (2017). doi: 10.1364/OPTICA.4.000809