[1] Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458-1462 (2012). doi: 10.1126/science.1216210
[2] Yao, J. J. & Wang, L. V. Photoacoustic microscopy. Laser Photonics Rev. 7, 758-778 (2013). doi: 10.1002/lpor.201200060
[3] Yao, J. J. et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J. Biomed. Opt. 16, 076003 (2011). doi: 10.1117/1.3594786
[4] Park, K. et al. Handheld photoacoustic microscopy probe. Sci. Rep. 7, 13359 (2017). doi: 10.1038/s41598-017-13224-3
[5] Yao, J. J. et al. In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt. Lett. 35, 1419-1421 (2010). doi: 10.1364/OL.35.001419
[6] Yao, J. J. et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 12, 407-410 (2015). doi: 10.1038/nmeth.3336
[7] Lee, D. et al. In vivo photoacoustic imaging of livers using biodegradable hyaluronic acid‐conjugated silica nanoparticles. Adv. Funct. Mater. 28, 1800941 (2018). doi: 10.1002/adfm.201800941
[8] Lee, D. et al. In vivo near infrared virtual intraoperative surgical photoacoustic optical coherence tomography. Sci. Rep. 6, 35176 (2016). doi: 10.1038/srep35176
[9] Wong, T. T. W. et al. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci. Adv. 3, e1602168 (2017). doi: 10.1126/sciadv.1602168
[10] Park, S. et al. Contrast-enhanced dual mode imaging: photoacoustic imaging plus more. Biomed. Eng. Lett. 7, 121-133 (2017). doi: 10.1007/s13534-016-0006-z
[11] Jeon, S. et al. In vivo photoacoustic imaging of anterior ocular vasculature: a random sample consensus approach. Sci. Rep. 7, 4318 (2017). doi: 10.1038/s41598-017-04334-z
[12] Kim, J. Y. et al. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner. Sci. Rep. 5, 7932 (2015). doi: 10.1038/srep07932
[13] Liu, W. et al. Quad-mode functional and molecular photoacoustic microscopy. Sci. Rep. 8, 11123 (2018). doi: 10.1038/s41598-018-29249-1
[14] Bondu, M. et al. Multispectral photoacoustic microscopy and optical coherence tomography using a single supercontinuum source. Photoacoustics 9, 21-30 (2018). doi: 10.1016/j.pacs.2017.11.002
[15] Erfanzadeh, M., Kumavor, P. D. & Zhu, Q. Laser scanning laser diode photoacoustic microscopy system. Photoacoustics 9, 1-9 (2018). doi: 10.1016/j.pacs.2017.10.001
[16] Hu, S., Maslov, K. & Wang, L. V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt. Lett. 36, 1134-1136 (2011). doi: 10.1364/OL.36.001134
[17] Wang, L. D. et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy. Opt. Lett. 36, 139-141 (2011). doi: 10.1364/OL.36.000139
[18] Yao, J. J. et al. Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror. J. Biomed. Opt. 17, 080505 (2012). doi: 10.1117/1.JBO.17.8.080505
[19] Rao, B. et al. Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging. Opt. Lett. 35, 1521-1523 (2010). doi: 10.1364/OL.35.001521
[20] Hajireza, P., Shi, W. & Zemp, R. J. Label-free in vivo fiber-based optical-resolution photoacoustic microscopy. Opt. Lett. 36, 4107-4109 (2011). doi: 10.1364/OL.36.004107
[21] Qin, W. et al. Large-field-of-view optical resolution photoacoustic microscopy. Opt. Express 26, 4271-4278 (2018). doi: 10.1364/OE.26.004271
[22] Lan, B. X. et al. High-speed widefield photoacoustic microscopy of small-animal hemodynamics. Biomed. Opt. Express 9, 4689-4701 (2018). doi: 10.1364/BOE.9.004689
[23] Wang, T. X. et al. Multiparametric photoacoustic microscopy of the mouse brain with 300-kHz A-line rate. Neurophotonics 3, 045006 (2016). doi: 10.1117/1.NPh.3.4.045006
[24] Liang, Y. Z. et al. 2 MHz multi-wavelength pulsed laser for functional photoacoustic microscopy. Opt. Lett. 42, 1452-1455 (2017). doi: 10.1364/OL.42.001452
[25] Kim, J. Y. et al. High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid. Sci. Rep. 6, 34803 (2016). doi: 10.1038/srep34803
[26] Liba, O. et al. Speckle-modulating optical coherence tomography in living mice and humans. Nat. Commun. 8, 15845 (2017). doi: 10.1038/ncomms15845
[27] Shimozono, S. et al. Confocal imaging of subcellular Ca2+ concentrations using a dual-excitation ratiometric indicator based on green fluorescent protein. Sci.'s. STKE 2002, pl4 (2002). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169277/
[28] Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368-1370 (2010). doi: 10.1126/science.1197236
[29] Tearney, G. J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037-2039 (1997). doi: 10.1126/science.276.5321.2037
[30] Packer, A. M. et al. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140-146 (2014). https://www.ncbi.nlm.nih.gov/pubmed/25532138
[31] Yao, J. J. et al. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging. Phys. Rev. Lett. 112, 014302 (2014). doi: 10.1103/PhysRevLett.112.014302
[32] Danielli, A. et al. Label-free photoacoustic nanoscopy. J. Biomed. Opt. 19, 086006 (2014). doi: 10.1117/1.JBO.19.8.086006
[33] Dean-Ben, X. L. & Razansky, D. Localization optoacoustic tomography. Light.: Sci. Appl. 7, 18004 (2018). doi: 10.1038/lsa.2018.4
[34] Vilov, S., Arnal, B. & Bossy, E. Overcoming the acoustic diffraction limit in photoacoustic imaging by the localization of flowing absorbers. Opt. Lett. 42, 4379-4382 (2017). doi: 10.1364/OL.42.004379
[35] Zhang, P. F. et al. In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets. Light.: Sci. Appl. 8, 36 (2019). doi: 10.1038/s41377-019-0147-9
[36] Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499-502 (2015). doi: 10.1038/nature16066
[37] Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606-612 (2017). doi: 10.1126/science.aak9913
[38] Huang, B., Bates, M. & Zhuang, X. W. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993-1016 (2009). doi: 10.1146/annurev.biochem.77.061906.092014
[39] Cai, D. et al. Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution. Opt. Express 25, 1421-1434 (2017). doi: 10.1364/OE.25.001421
[40] Zhang, H. F., Maslov, K. I. & Wang, L. V. Automatic algorithm for skin profile detection in photoacoustic microscopy. J. Biomed. Opt. 14, 024050 (2009). doi: 10.1117/1.3122362
[41] Krumholz, A. et al. Functional photoacoustic microscopy of diabetic vasculature. J. Biomed. Opt. 17, 060502 (2012). doi: 10.1117/1.JBO.17.6.060502
[42] Ning, B. et al. Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow. Opt. Lett. 40, 910-913 (2015). doi: 10.1364/OL.40.000910
[43] Hu, S. et al. Label-free photoacoustic ophthalmic angiography. Opt. Lett. 35, 1-3 (2010). doi: 10.1364/OL.35.000001