[1] Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light 6, e17100 (2017). doi: 10.1038/lsa.2017.100
[2] Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008). doi: 10.1038/nature07127
[3] Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005). doi: 10.1038/nature03347
[4] Humphreys, P. C. et al. Linear optical quantum computing in a single spatial mode. Phys. Rev. Lett. 111, 150501 (2013). doi: 10.1103/PhysRevLett.111.150501
[5] Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012). doi: 10.1038/nphys2253
[6] Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010). doi: 10.1126/science.1188172
[7] Yao, X. C. et al. Observation of eight-photon entanglement. Nat. Photonics 6, 225–228 (2012). doi: 10.1038/nphoton.2011.354
[8] Huang, Y. F. et al. Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state. Nat. Commun. 2, 546 (2011). doi: 10.1038/ncomms1556
[9] Wang, X. L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016). doi: 10.1103/PhysRevLett.117.210502
[10] Matsuda, N. et al. A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2, 817 (2012). doi: 10.1038/srep00817
[11] Tanzilli, S. et al. On the genesis and evolution of integrated quantum optics. Laser Photonics Rev. 6, 115–143 (2012). doi: 10.1002/lpor.201100010
[12] Takesue, H. et al. Generation of polarization entangled photon pairs using silicon wire waveguide. Opt. Express 16, 5721–5727 (2008). doi: 10.1364/OE.16.005721
[13] Harada, K. I. et al. Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide. IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010). doi: 10.1109/JSTQE.2009.2023338
[14] Lim, H. C. et al. Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide. Opt. Express 16, 12460–12468 (2008). doi: 10.1364/OE.16.012460
[15] Martin, A. et al. A polarization entangled photon-pair source based on a type-Ⅱ PPLN waveguide emitting at a telecom wavelength. New J. Phys. 12, 103005 (2010). doi: 10.1088/1367-2630/12/10/103005
[16] Suhara, T. et al. Quasi-phase-matched waveguide devices for generation of postselection-free polarization-entangled twin photons. IEEE Photonics Technol. Lett. 21, 1096–1098 (2009). doi: 10.1109/LPT.2009.2023799
[17] Takesue, H. et al. Entanglement generation using silicon wire waveguide. Appl. Phys. Lett. 91, 201108 (2007). doi: 10.1063/1.2814040
[18] Harris, N. C. et al. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys. Rev. X 4, 041047 (2014).
[19] Heeres, R. W., Kouwenhoven, L. P. & Zwiller, V. Quantum interference in plasmonic circuits. Nat. Nanotechnol. 8, 719–722 (2013). doi: 10.1038/nnano.2013.150
[20] Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015). doi: 10.1038/ncomms6873
[21] Schuck, C. et al. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip. Nat. Commun. 7, 10352 (2016). doi: 10.1038/ncomms10352
[22] Harada, K. I. et al. Indistinguishable photon pair generation using two independent silicon wire waveguides. New J. Phys. 13, 065005 (2011). doi: 10.1088/1367-2630/13/6/065005
[23] Spring, J. B. et al. Chip-based array of near-identical, pure, heralded single-photon sources. Optica 4, 90–96 (2017). doi: 10.1364/OPTICA.4.000090
[24] Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016). doi: 10.1126/science.aad8532
[25] Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Light Technol. 23, 401–412 (2005). doi: 10.1109/JLT.2004.834471
[26] Li, Y. H. et al. On-chip multiplexed multiple entanglement sources in a single silicon nanowire. Phys. Rev. Appl. 7, 064005 (2017). doi: 10.1103/PhysRevApplied.7.064005
[27] Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 8, 104–108 (2014). doi: 10.1038/nphoton.2013.339
[28] Silverstone, J. W. et al. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 6, 7948 (2015). doi: 10.1038/ncomms8948
[29] Wang, J. W. et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016). doi: 10.1364/OPTICA.3.000407
[30] Wang, J. W. et al. Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017). doi: 10.1038/nphys4074
[31] Paesani, S. et al. Experimental Bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118, 100503 (2017). doi: 10.1103/PhysRevLett.118.100503
[32] Feng, L. T. et al. On-chip transverse-mode entangled photon pair source. npj Quantum Inf. 5, 2 (2019). doi: 10.1038/s41534-018-0121-z
[33] McCutcheon, W. et al. Experimental verification of multipartite entanglement in quantum networks. Nat. Commun. 7, 13251 (2016). doi: 10.1038/ncomms13251
[34] Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007). doi: 10.1103/RevModPhys.79.135
[35] Pan, J. W. et al. Multi-photon entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012). doi: 10.1103/RevModPhys.84.777
[36] Braunstein, S. L., Mann, A. & Revzen, M. Maximal violation of Bell inequalities for mixed states. Phys. Rev. Lett. 68, 3259–3261 (1992). doi: 10.1103/PhysRevLett.68.3259
[37] James, D. F. V. et al. Measurement of qubits. Phys. Rev. A 64, 052312 (2001). doi: 10.1103/PhysRevA.64.052312
[38] Marchetti, R. et al. High-efficiency grating-couplers: demonstration of a new design strategy. Sci. Rep. 7, 16670 (2017). doi: 10.1038/s41598-017-16505-z
[39] Matthews, J. C. F. et al. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346–350 (2009). doi: 10.1038/nphoton.2009.93
[40] Fan, L. R. et al. Integrated optomechanical single-photon frequency shifter. Nat. Photonics 10, 766–770 (2016). doi: 10.1038/nphoton.2016.206
[41] Lukens, J. M. & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8–16 (2017). doi: 10.1364/OPTICA.4.000008
[42] Lu, H. H. et al. Electro-optic frequency beam splitters and Tritters for high-fidelity photonic Quantum information processing. Phys. Rev. Lett. 120, 030502 (2018). doi: 10.1103/PhysRevLett.120.030502
[43] Zhao, T. M. et al. Entangling different-color photons via time-resolved measurement and active feed forward. Phys. Rev. Lett. 112, 103602 (2014). doi: 10.1103/PhysRevLett.112.103602