[1] Li, J. X. et al. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017). doi: 10.1126/scirobotics.aam6431
[2] Kim, Y. et al. Ferromagnetic soft continuum robots. Sci. Robot. 4, eaax7329 (2019). doi: 10.1126/scirobotics.aax7329
[3] Gao, W. et al. Artificial micromotors in the mouse's stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015). doi: 10.1021/nn507097k
[4] De Ávila, B. E. F. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017). doi: 10.1038/s41467-017-00309-w
[5] Li, J. Y. et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3, eaat8829 (2018). doi: 10.1126/scirobotics.aat8829
[6] Yan, X. H. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017). doi: 10.1126/scirobotics.aaq1155
[7] Jurado-Sánchez, B., Wang, J. & Escarpa, A. Ultrafast nanocrystals decorated micromotors for on-site dynamic chemical processes. ACS Appl. Mater. Interfaces 8, 19618–19625 (2016). doi: 10.1021/acsami.6b05824
[8] Tottori, S. et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012). doi: 10.1002/adma.201103818
[9] Gao, W. et al. Bioinspired helical microswimmers based on vascular plants. Nano Lett. 14, 305–310 (2014). doi: 10.1021/nl404044d
[10] Ivanov, K. P., Kalinina, M. K. & Levkovich, Y. I. Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvascular Res. 22, 143–155 (1981). doi: 10.1016/0026-2862(81)90084-4
[11] Tu, Y. F., Peng, F. & Wilson, D. A. Motion manipulation of micro- and nanomotors. Adv. Mater. 29, 1701970 (2017). doi: 10.1002/adma.201701970
[12] Chen, X. Z. et al. Small-scale machines driven by external power sources. Adv. Mater. 30, 1705061 (2018). doi: 10.1002/adma.201705061
[13] De Ávila, B. E. F. et al. Micromotors go in vivo: from test tubes to live animals. Adv. Funct. Mater. 28, 1705640 (2018). doi: 10.1002/adfm.201705640
[14] Wu, Z. G. et al. Superfast near-infrared light-driven polymer multilayer rockets. Small 12, 577–582 (2016). doi: 10.1002/smll.201502605
[15] Medina-Sánchez, M. & Schmidt, O. G. Medical microbots need better imaging and control. Nature 545, 406–408 (2017). doi: 10.1038/545406a
[16] Pané, S. et al. Imaging technologies for biomedical micro- and nanoswimmers. Adv. Mater. Technol. 4, 1800575 (2019). doi: 10.1002/admt.201800575
[17] Wu, Z. G. et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4, eaax0613 (2019). doi: 10.1126/scirobotics.aax0613
[18] Li, L. et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed. Eng. 1, 0071 (2017). doi: 10.1038/s41551-017-0071
[19] Aziz, A. et al. Real-time optoacoustic tracking of single moving micro-objects in deep phantom and ex vivo tissues. Nano Lett. 19, 6612–6620 (2019). doi: 10.1021/acs.nanolett.9b02869
[20] Wang, L. V. & Yao, J. J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016). doi: 10.1038/nmeth.3925
[21] Zhang, J. H. et al. How does the leaf margin make the lotus surface dry as the lotus leaf floats on water. Soft Matter 4, 2232–2237 (2008). doi: 10.1039/b807857b
[22] Jiang, H. R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010). doi: 10.1103/PhysRevLett.105.268302
[23] Wu, Y. J. et al. Near-infrared light-driven Janus capsule motors: fabrication, propulsion, and simulation. Nano Res. 9, 3747–3756 (2016). doi: 10.1007/s12274-016-1245-0
[24] Li, D. F. et al. In situ bending and recovery characterization of hollow glass nanoneedle based on nanorobotic manipulation. J. Micromech. Microeng. 27, 095011 (2017). doi: 10.1088/1361-6439/aa843b
[25] Wang, L. D. et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy. Opt. Lett. 36, 139–141 (2011). doi: 10.1364/OL.36.000139
[26] Liang, Y. Z. et al. Fast-scanning photoacoustic microscopy with a side-looking fiber optic ultrasound sensor. Biomed. Opt. Express 9, 5809–5816 (2018). doi: 10.1364/BOE.9.005809
[27] Lan, B. X. et al. High-speed widefield photoacoustic microscopy of small-animal hemodynamics. Biomed. Opt. Express 9, 4689–4701 (2018). doi: 10.1364/BOE.9.004689
[28] Yao, J. J. et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 12, 407–410 (2015). doi: 10.1038/nmeth.3336
[29] Yang, J. M. et al. Optical-resolution photoacoustic endomicroscopy in vivo. Biomed. Opt. Express 6, 918–932 (2015). doi: 10.1364/BOE.6.000918
[30] Li, Y. et al. In vivo photoacoustic/ultrasonic dual-modality endoscopy with a miniaturized full field-of-view catheter. J. Biophotonics 11, e201800034 (2018). doi: 10.1002/jbio.201800034
[31] Lei, P. et al. Ultrafine intravascular photoacoustic endoscope with a 0.7 mm diameter probe. Opt. Lett. 44, 5406–5409 (2019).
[32] Zhang, P. F. et al. In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets. Light.: Sci. Appl. 8, 36 (2019). doi: 10.1038/s41377-019-0147-9
[33] Yun, S. H. & Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017). doi: 10.1038/s41551-016-0008
[34] Das, A., Sarda, A. & De, A. Cooling devices in laser therapy. J. Cutan. Aesthetic Surg. 9, 215–219 (2016). doi: 10.4103/0974-2077.197028
[35] Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010). doi: 10.1146/annurev-bioeng-010510-103409
[36] Soto, F. & Chrostowski, R. Frontiers of medical micro/nanorobotics: in vivo applications and commercialization perspectives toward clinical uses. Front. Bioeng. Biotechnol. 6, 170 (2018). doi: 10.3389/fbioe.2018.00170
[37] Ceylan, H. et al. Translational prospects of untethered medical microrobots. Prog. Biomed. Eng. 1, 012002 (2019). doi: 10.1088/2516-1091/ab22d5
[38] Wang, L. D., Maslov, K. & Wang, L. V. Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc. Natl Acad. Sci. USA 110, 5759–5764 (2013). doi: 10.1073/pnas.1215578110
[39] Liang, Y. Z. et al. 2 MHz multi-wavelength pulsed laser for functional photoacoustic microscopy. Opt. Lett. 42, 1452–1455 (2017). doi: 10.1364/OL.42.001452
[40] Liu, C., Liang, Y. Z. & Wang, L. D. Optical-resolution photoacoustic microscopy of oxygen saturation with nonlinear compensation. Biomed. Opt. Express 10, 3061–3069 (2019). doi: 10.1364/BOE.10.003061