[1] Zare NZ. Laser control of chemical reactions. Science 1998; 279: 1875–1879. doi: 10.1126/science.279.5358.1875
[2] Crim FF. Making energy count. Science 2007; 316: 1707–1708. doi: 10.1126/science.1144282
[3] Killelea DR, Campbell VL, Shuman NS, Utz AL. Bond-selective control of a heterogeneously catalyzed reaction. Science 2008; 319: 790–793. doi: 10.1126/science.1152819
[4] Yan S, Wu YT, Zhang BL, Yue XF, Liu K. Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom? Science 2007; 316: 1723–1726. doi: 10.1126/science.1142313
[5] Liu ZH, Feldman LC, Tolk NH, Zhang ZY, Cohen PL. Desorption of H from Si(111) by resonant excitation of the Si-H vibrational stretch mode. Science 2006; 312: 1024–1026. doi: 10.1126/science.1124529
[6] Hideo O. Photochemistry of Small Molecules. New York: Wiley; 1978.
[7] Fan LS, Zhou YS, Wang MX, Gao Y, Liu L et al. Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition. Laser Phys Lett 2014; 11: 076002. doi: 10.1088/1612-2011/11/7/076002
[8] Fan LS, Xei ZQ, Park JB, He XN, Zhou YS et al. Synthesis of nitrogen-doped diamond films using vibrational excitation of ammonia molecules in laser-assisted combustion flames. J Laser Appl 2012; 24: 022001. doi: 10.2351/1.3685299
[9] Golgir HR, Gao Y, Zhou YS, Fan LS, Thirugnanam P et al. Low-temperature growth of crystalline gallium nitride films using vibrational excitation of ammonia molecules in laser-assisted metalorganic chemical vapor deposition. Cryst Growth Des 2014; 14: 6248–6253. doi: 10.1021/cg500862b
[10] Keramatnejad K, Zhou YS, Gao Y, Golgir HR, Wang M et al. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors. J Appl Phys 2015; 118: 154311. doi: 10.1063/1.4934255
[11] Wijnen MHJ. Photolysis of ethane at 1470 A. J Chem Phys 1956; 24: 851–854. doi: 10.1063/1.1742620
[12] Michelsen HA, Salawitch RJ, Wennberg PO, Anderson JG. Production of O(1D) from photolysis of O3. Geophys Res Lett 1994; 21: 2227–2230. doi: 10.1029/94GL02052
[13] Young RA, Black G, Slanger TG. Vacuum-ultraviolet photolysis of N2O. I. Metastable species produced at 1470 Å. J Chem Phys 1968; 49: 4769–4776. doi: 10.1063/1.1669958
[14] Tyndall GW, Hacker NP. KrF laser-induced chemical vapor deposition of diamond. MRS Online Proc 1989; 162: 173. doi: 10.1557/PROC-162-173
[15] Goto Y, Yag T, Nagai H. Synthesis of diamond films by laser-induced chemical vapor deposition. MRS Online Proc 1988; 129: 213. doi: 10.1557/PROC-129-213
[16] Rebello JHD, Straub DL, Subramaniam VV. Diamond growth from a CO/CH4 mixture by laser excitation of CO: laser excited chemical vapor deposition. J Appl Phys 1992; 72: 1133–1136. doi: 10.1063/1.351790
[17] Kitahama K, Hirata K, Nakamatsu H, Kawai S, Fujimori N et al. Synthesis of diamond by laser-induced chemical vapor deposition. Appl Phys Lett 1986; 49: 634–635. doi: 10.1063/1.97063
[18] Kitahama K. Reinvestigation of the carbon films prepared by ArF excimer laser-induced chemical vapor deposition. Appl Phys Lett 1988; 53: 1812–1814. doi: 10.1063/1.99788
[19] He XN, Shen XK, Gebre T, Xie ZQ, Jiang L et al. Spectroscopic determination of rotational temperature in C2H4/C2H2/O2 flames for diamond growth with and without tunable CO2 laser excitation. Appl Opt 2010; 49: 1555–1562. doi: 10.1364/AO.49.001555
[20] Lifshitz Y, Köhler T, Frauenheim T, Guzmann I, Hoffman A et al. The mechanism of diamond nucleation from energetic species. Science 2002; 297: 1531–1533. doi: 10.1126/science.1074551
[21] Klein-Douwei RJH, Spaanjaars JJL, ter Meulen JJ. Two-dimensional distributions of C2, CH and OH in a diamond depositing oxyacetylene flame measured by laser induced fluorescence. J Appl Phys 1995; 78: 2086–2096. doi: 10.1063/1.360186
[22] Luque J, Juchmann W, Jeffries JB. Spatial density distributions of C2, C3 and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet. J Appl Phys 1997; 82: 2072–2081. doi: 10.1063/1.366017
[23] Komaki K, Yanagisawa M, Yamamoto I, Hirose Y. Synthesis of diamond in combustion flame under low pressures. Jpn J Appl Phys 1993; 32: 1814–1817. doi: 10.1143/JJAP.32.1814
[24] Miller JA, Melius CF. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust Flame 1992; 91: 21–39. doi: 10.1016/0010-2180(92)90124-8
[25] Yalamanchi RS, Harshavardhan KS. Diamond growth in combustion flames. J Appl Phys 1990; 68: 5941–5943. doi: 10.1063/1.346927
[26] Gruen DM, Redfern PC, Horner DA, Zapol P, Curtiss LA. Theoretical studies on nanocrystalline diamond: nucleation by dicarbon and electronic structure of planar defects. J Phys Chem B 1999; 103: 5459–5467. doi: 10.1021/jp990165y
[27] Redfern PC, Horner DA, Curtiss LA, Gruen DM. Theoretical studies of growth of diamond (110) from dicarbon. J Phys Chem 1996; 100: 11654–11663. doi: 10.1021/jp953165g
[28] Shimada M, Tynan GR, Cattolica R. Rotational and translational temperature equilibrium in an inductively coupled plasma. J Vac Sci Technol A 2006; 24: 1878–1883. doi: 10.1116/1.2244539
[29] Kim JS, Cappelli MA. Temperature measurements in low-pressure, diamond-forming, premixed flames. J Appl Phys 1998; 84: 4595–4602. doi: 10.1063/1.368685
[30] Fan LS, Zhou YS, Wang MX, Gao Y, Xiong W et al. Mass spectrometric investigation of the roles of several chemical intermediates in diamond synthesis. RSC Adv 2015; 5: 4822–4830. doi: 10.1039/C4RA09058F
[31] Asmussen JA, Reinhard DK. Diamond Films Handbook. New York: Marcel Dekker; 2002.
[32] Liu HM, Dandy DS. Diamond Chemical Vapor Deposition: Nucleation and Early Growth Stages. Amsterdam: Elsevier; 1996.
[33] Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond A 2004; 362: 2477–2512. doi: 10.1098/rsta.2004.1452
[34] Bąk GW, Fabisiak K, Klimek L, Kozanecki M, Staryga E. Investigation of biaxial stresses in diamond films deposited on a silicon substrate by the HF CVD method. Opt Mater 2008; 30: 770–773. doi: 10.1016/j.optmat.2007.02.034
[35] Frenklach M, Spear KE. Growth mechanism of vapor-deposited diamond. J Mater Res 1988; 3: 133–140. doi: 10.1557/JMR.1988.0133
[36] Wang MM, Zhou YS, Xie ZQ, Gao Y, He XN et al. Seed-free growth of diamond patterns on silicon predefined by femtosecond laser direct writing. Cryst Growth Des 2013; 13: 716–722. doi: 10.1021/cg301440k
[37] Kim GH. Transmission electron microscope observation of diamond/WC interface. J Cryst Growth 1997; 178: 634–638. doi: 10.1016/S0022-0248(96)01119-0
[38] Hamzah E, Yong TM, Mat Yajid MA. Surface morphology and bond characterization of nanocrystalline diamonds grown on tungsten carbide via hot filament chemical vapor deposition. J Cryst Growth 2013; 372: 109–115. doi: 10.1016/j.jcrysgro.2013.02.009
[39] Okabe H. Photochemistry of acetylene. Can J Chem 1983; 61: 850–855. doi: 10.1139/v83-153
[40] Okabe H, McNesby JR. Vacuum ultraviolet photochemistry. Ⅱ. Photolysis of ethylene. J Chem Phys 1962; 36: 601–604. doi: 10.1063/1.1732578