[1] Eaton, S. W. et al. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016). doi: 10.1038/natrevmats.2016.28
[2] Zhou, Z. H. et al. Organic printed core-shell heterostructure arrays: a universal approach to all-color laser display panels. Angew. Chem. Int. Ed. 59, 11814–11818 (2020). doi: 10.1002/anie.202002580
[3] Guo, P. F. et al. Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires. Nano Lett. 13, 1251–1256 (2013). doi: 10.1021/nl3047893
[4] Zhao, J. Y. et al. Full-color laser displays based on organic printed microlaser arrays. Nat. Commun. 10, 870 (2019). doi: 10.1038/s41467-019-08834-6
[5] Feng, L. et al. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014). doi: 10.1126/science.1258479
[6] Xu, F. F. et al. Flat-panel laser displays based on liquid crystal microlaser arrays. CCS Chem. 2, 369–375 (2020). doi: 10.31635/ccschem.020.202000162
[7] Gao, H. W. et al. Cleaved-coupled nanowire lasers. Proc. Natl Acad. Sci. USA 110, 865–869 (2013). doi: 10.1073/pnas.1217335110
[8] Zhang, C. H. et al. Dual-color single-mode lasing in axially coupled organic nanowire resonators. Sci. Adv. 3, e1700225 (2017). doi: 10.1126/sciadv.1700225
[9] Persano, L. et al. Distributed feedback imprinted electrospun fiber lasers. Adv. Mater. 26, 6542–6547 (2014). doi: 10.1002/adma.201401945
[10] Gu, F. X. et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light.: Sci. Appl. 6, e17061 (2017). doi: 10.1038/lsa.2017.61
[11] Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 7, 335–339 (2012). doi: 10.1038/nnano.2012.61
[12] Ning, C. Z., Dou, L. T. & Yang, P. D. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017). doi: 10.1038/natrevmats.2017.70
[13] Cerdán, L. et al. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nat. Photonics 6, 621–626 (2012). doi: 10.1038/nphoton.2012.201
[14] Xu, J. Y. et al. Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc. 134, 12394–12397 (2012). doi: 10.1021/ja3050458
[15] Ta, V. D. et al. Multicolor lasing prints. Appl. Phys. Lett. 107, 221103 (2015). doi: 10.1063/1.4936628
[16] Zhuang, X. J. et al. Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers. Nano Res. 9, 933–941 (2016). doi: 10.1007/s12274-015-0977-6
[17] Yang, Z. Y. et al. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires. Nano Lett. 14, 3153–3159 (2014). doi: 10.1021/nl500432m
[18] Zhang, C. et al. Organic printed photonics: from microring lasers to integrated circuits. Sci. Adv. 1, e1500257 (2015). doi: 10.1126/sciadv.1500257
[19] Bao, Q. Y. et al. On-chip single-mode CdS nanowire laser. Light. Sci. Appl. 9, 42 (2020). doi: 10.1038/s41377-020-0277-0
[20] Ta, V. D., Chen, R. & Sun, H. D. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Adv. Optical Mater. 2, 220–225 (2014). doi: 10.1002/adom.201300433
[21] Ku, J. F. et al. Photonic-molecule single-mode laser. IEEE Photonics Technol. Lett. 27, 1157–1160 (2015). doi: 10.1109/LPT.2015.2413052
[22] Dong, H. Y. et al. Broadband tunable microlasers based on controlled intramolecular charge-transfer process in organic supramolecular microcrystals. J. Am. Chem. Soc. 138, 1118–1121 (2016). doi: 10.1021/jacs.5b11525
[23] Armani, D. K. et al. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003). doi: 10.1038/nature01371
[24] Zhu, J. G. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 4, 46–49 (2010). doi: 10.1038/nphoton.2009.237
[25] Li, L. et al. Integrated flexible chalcogenide glass photonic devices. Nat. Photonics 8, 643–649 (2014). doi: 10.1038/nphoton.2014.138
[26] Gao, Z. H. et al. Smart responsive organic microlasers with multiple emission states for high-security optical encryption. National Science Review, https://doi.org/10.1093/nsr/nwaa162 (2020).
[27] Wei, C. et al. Controlled self-assembly of organic composite microdisks for efficient output coupling of whispering-gallery-mode lasers. J. Am. Chem. Soc. 137, 62–65 (2015). doi: 10.1021/ja5112817
[28] Zhang, C. et al. Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J. Am. Chem. Soc. 133, 7276–7279 (2011). doi: 10.1021/ja200549v
[29] Wei, C. et al. Organic janus microspheres: a general approach to all-color dual-wavelength microlasers. J. Am. Chem. Soc. 141, 5116–5120 (2019). doi: 10.1021/jacs.9b00362
[30] Ta, V. D., Chen, R. & Sun, H. D. Self-assembled flexible microlasers. Adv. Mater. 24, OP60–OP64 (2012). doi: 10.1002/adma.201103409
[31] Lv, Y. C. et al. All-color subwavelength output of organic flexible microlasers. J. Am. Chem. Soc. 139, 11329–11332 (2017). doi: 10.1021/jacs.7b06174
[32] Kuehne, A. J. C. & Gather, M. C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem. Rev. 116, 12823–12864 (2016). doi: 10.1021/acs.chemrev.6b00172
[33] Zhang, Q. et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014). doi: 10.1021/nl503057g
[34] Zhang, W., Yao, J. N. & Zhao, Y. S. Organic micro/nanoscale lasers. Acc. Chem. Res. 49, 1691–1700 (2016). doi: 10.1021/acs.accounts.6b00209
[35] Ge, L. & Türeci, H. E. Inverse vernier effect in coupled lasers. Phys. Rev. A 92, 013840 (2015). doi: 10.1103/PhysRevA.92.013840
[36] Li, M. et al. Inversed vernier effect based single-mode laser emission in coupled microdisks. Sci. Rep. 5, 13682 (2015). doi: 10.1038/srep13682
[37] Siegle, T. et al. Photonic molecules with a tunable inter-cavity gap. Light. Sci. Appl. 6, e16224 (2017). doi: 10.1038/lsa.2016.224
[38] Takesue, H. et al. An on-chip coupled resonator optical waveguide single-photon buffer. Nat. Commun. 4, 2725 (2013). doi: 10.1038/ncomms3725
[39] Clark, J. & Lanzani, G. Organic photonics for communications. Nat. Photonics 4, 438–446 (2010). doi: 10.1038/nphoton.2010.160
[40] Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002). doi: 10.1038/415621a
[41] Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014). doi: 10.1038/nphys2927