[1] Almand-Hunter, A. E. et al. Quantum droplets of electrons and holes. Nature 506, 471-475 (2014). doi: 10.1038/nature12994
[2] Keldysh, L. V. Macroscopic Coherent States of Excitons in Semiconductors (Cambridge University Press, Cambridge, 1995).
[3] Zimmermann, R. Many-Particle Theory of Highly Excited Semiconductors (B.G. Teubner, Leipzig, 1988).
[4] Mott, N. F. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. Sect. A 62, 416-422 (1949). doi: 10.1088/0370-1298/62/7/303
[5] Semkat, D. et al. Ionization equilibrium in an excited semiconductor: Mott transition versus Bose-Einstein condensation. Phys. Rev. B 80, 155201 (2009). doi: 10.1103/PhysRevB.80.155201
[6] Klingshirn, C. & Haug, H. Optical properties of highly excited direct gap semiconductors. Phys. Rep. 70, 315-398 (1981). doi: 10.1016/0370-1573(81)90190-3
[7] Asano, K. & Yoshioka, T. Exciton-Mott physics in two-dimensional electron-hole systems: phase diagram and single-particle spectra. J. Phys. Soc. Jpn. 83, 084702 (2014). doi: 10.7566/JPSJ.83.084702
[8] Tanaka, I. & Nakayama, M. Stimulated emission due to the inelastic scattering from the heavy-hole exciton to the light-hole exciton in CuI thin films. J. Appl. Phys. 92, 3511-3516 (2002). doi: 10.1063/1.1502205
[9] Ding, J. et al. Excitonic gain and laser emission in ZnSe-based quantum wells. Phys. Rev. Lett. 69, 1707-1710 (1992). doi: 10.1103/PhysRevLett.69.1707
[10] Kreller, F. et al. Role of biexcitons in the stimulated emission of wide-gap II-VI quantum wells. Phys. Rev. Lett. 75, 2420-2423 (1995). doi: 10.1103/PhysRevLett.75.2420
[11] Hayamizu, Y. et al. Biexciton gain and the Mott transition in GaAs quantum wires. Phys. Rev. Lett. 99, 167403 (2007). doi: 10.1103/PhysRevLett.99.167403
[12] Puls, J. et al. Laser action of trions in a semiconductor quantum well. Phys. Rev. Lett. 89, 287402 (2002). doi: 10.1103/PhysRevLett.89.287402
[13] Wu, K. F. et al. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140-1147 (2017). doi: 10.1038/nnano.2017.189
[14] Tassone, F. & Yamamoto, Y. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830-10842 (1999). doi: 10.1103/PhysRevB.59.10830
[15] Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314-317 (2000). doi: 10.1126/science.290.5490.314
[16] Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441-446 (2007). doi: 10.1038/nature05839
[17] Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207-211 (2013). doi: 10.1038/nmat3505
[18] Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1417 (2013). doi: 10.1038/ncomms2421
[19] Yang, J. et al. Robust excitons and trions in monolayer MoTe2. ACS Nano 9, 6603-6609 (2015). doi: 10.1021/acsnano.5b02665
[20] Courtade, E. et al. Charged excitons in monolayer WSe2: experiment and theory. Phys. Rev. B 96, 085302 (2017). doi: 10.1103/PhysRevB.96.085302
[21] You, Y. M. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477-481 (2015). doi: 10.1038/nphys3324
[22] Shang, J. Z. et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 9, 647-655 (2015). doi: 10.1021/nn5059908
[23] Plechinger, G. et al. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi -Rapid Res. Lett. 9, 457-461 (2015). doi: 10.1002/pssr.201510224
[24] Wu, S. F. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69-72 (2015). doi: 10.1038/nature14290
[25] Li, Y. Z. et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 12, 987-992 (2017). doi: 10.1038/nnano.2017.128
[26] Ye, Y. et al. Monolayer excitonic laser. Nat. Photonics 9, 733-737 (2015). doi: 10.1038/nphoton.2015.197
[27] Liu, X. Z. et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30-34 (2015). doi: 10.1038/nphoton.2014.304
[28] Salehzadeh, O. et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 15, 5302-5306 (2015). doi: 10.1021/acs.nanolett.5b01665
[29] Reed, J. C. et al. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett. 15, 1967-1971 (2015). doi: 10.1021/nl5048303
[30] Chernikov, A. et al. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics 9, 466-470 (2015). doi: 10.1038/nphoton.2015.104
[31] Meckbach, L., Stroucken, T. & Koch, S. W. Giant excitation induced bandgap renormalization in TMDC monolayers. Appl. Phys. Lett. 112, 061104 (2018). doi: 10.1063/1.5017069
[32] Lohof, F. et al. Prospects and limitations of transition metal dichalcogenide laser gain materials. Nano Lett. 19, 210-217 (2019). doi: 10.1021/acs.nanolett.8b03729
[33] Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9, 268-272 (2014). doi: 10.1038/nnano.2014.26
[34] Bie, Y. Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124-1129 (2017). doi: 10.1038/nnano.2017.209
[35] Robert, C. et al. Excitonic properties of semiconducting monolayer and bilayer MoTe2. Phys. Rev. B 94, 155425 (2016). doi: 10.1103/PhysRevB.94.155425
[36] Lezama, I. G. et al. Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett. 15, 2336-2342 (2015). doi: 10.1021/nl5045007
[37] Koirala, S. et al. Homogeneous linewidth broadening and exciton dephasing mechanism in MoTe2. Phys. Rev. B 93, 075411 (2016). doi: 10.1103/PhysRevB.93.075411
[38] Faist, J. et al. Quantum cascade lasers without intersubband population inversion. Phys. Rev. Lett. 76, 411-414 (1996). doi: 10.1103/PhysRevLett.76.411
[39] Siviniant, J. et al. Chemical equilibrium between excitons, electrons, and negatively charged excitons in semiconductor quantum wells. Phys. Rev. B 59, 1602-1604 (1999). doi: 10.1103/PhysRevB.59.1602
[40] Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255-261 (2017). doi: 10.1038/nphys3949
[41] Efimkin, D. K. & MacDonald, A. H. Many-body theory of Trion absorption features in two-dimensional semiconductors. Phys. Rev. B 95, 035417 (2017). doi: 10.1103/PhysRevB.95.035417
[42] Ding, K. et al. Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects. Laser Photonics Rev. 9, 488-497 (2015). doi: 10.1002/lpor.201500037
[43] Feng, J. B. et al. External quantum efficiency of monolayer MoTe2 based near-infrared light emitting diodes. Conference on Lasers and Electro-Optics (San Jose, CA, U.S.: OSA, 2019). https://doi.org/10.1364/CLEO_SI.2019.STh3O.1.
[44] Zhang, J. X. et al. Cavity enhanced trion emission from a bilayer MoTe2 on silicon. Conference on Lasers and Electro-Optics (San Jose, CA, U.S.: OSA, 2019). https://doi.org/10.1364/CLEO_SI.2019.STh1J.7.