[1] Xu, S., Jayaraman, A. & Rogers, J. A. Skin sensors are the future of health care. Nature 571, 319-321 (2019). doi: 10.1038/d41586-019-02143-0
[2] Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chemical Reviews 119, 5461-5533 (2019). doi: 10.1021/acs.chemrev.8b00573
[3] Chen, X. D. et al. Materials chemistry in flexible electronics. Chemical Society Reviews 48, 1431-1433 (2019). doi: 10.1039/C9CS90019E
[4] Rogers, J., Bao, Z. N. & Lee, T. W. Wearable bioelectronics: opportunities for chemistry. Accounts of Chemical Research 52, 521-522 (2019). doi: 10.1021/acs.accounts.9b00048
[5] Rogers, J. A., Chen, X. D. & Feng, X. Flexible hybrid electronics. Advanced Materials 32, 1905590 (2020). doi: 10.1002/adma.201905590
[6] Li, J. H., Zhao, J. & Rogers, J. A. Materials and designs for power supply systems in skin-interfaced electronics. Accounts of Chemical Research 52, 53-62 (2019).
[7] Lee, G. H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nature Reviews Materials 5, 149-165 (2020). doi: 10.1038/s41578-019-0167-3
[8] Rogers, J. A., Someya, T. & Huang, Y. G. Materials and mechanics for stretchable electronics. Science 327, 1603-1607 (2010). doi: 10.1126/science.1182383
[9] Hong, Y. J. et al. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Advanced Functional Materials 29, 1808247 (2019). doi: 10.1002/adfm.201808247
[10] Won, S. M. et al. Emerging modalities and implantable technologies for neuromodulation. Cell 181, 115-135 (2020). doi: 10.1016/j.cell.2020.02.054
[11] Song, E. M. et al. Materials for flexible bioelectronic systems as chronic neural interfaces. Nature Materials 19, 590-603 (2020). doi: 10.1038/s41563-020-0679-7
[12] Shin, J. et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Science Advances 5, eaaw1899 (2019). doi: 10.1126/sciadv.aaw1899
[13] Na, K. et al. Novel diamond shuttle to deliver flexible neural probe with reduced tissue compression. Microsystems & Nanoengineering 6, 37 (2020).
[14] Shen, W. et al. Microfabricated intracortical extracellular matrix-microelectrodes for improving neural interfaces. Microsystems & Nanoengineering 4, 30 (2018).
[15] Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 158, 2108-2116 (2017). doi: 10.1097/j.pain.0000000000000968
[16] Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509-521.e3 (2017).
[17] Zhang, Y. et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proceedings of the National Academy of Sciences of the United States of America 116, 21427-21437 (2019). doi: 10.1073/pnas.1909850116
[18] Gutruf, P. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nature Electronics 1, 652-660 (2018). doi: 10.1038/s41928-018-0175-0
[19] Yu, X. G. et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nature Biomedical Engineering 2, 165-172 (2018). doi: 10.1038/s41551-018-0201-6
[20] Won, S. M. et al. Recent advances in materials, devices, and systems for neural interfaces. Advanced Materials 30, 1800534 (2018). doi: 10.1002/adma.201800534
[21] Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nature Medicine 24, 1830-1836 (2018). doi: 10.1038/s41591-018-0196-2
[22] Guo, Q. L. et al. A bioresorbable magnetically coupled system for low-frequency wireless power transfer. Advanced Functional Materials 29, 1905451 (2019). doi: 10.1002/adfm.201905451
[23] Yu, X. W. et al. Materials, processes, and facile manufacturing for bioresorbable electronics: a review. Advanced Materials 30, 1707624 (2018). doi: 10.1002/adma.201707624
[24] Gutruf, P. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nature Communications 10, 5742 (2019). doi: 10.1038/s41467-019-13637-w
[25] Yan, Z. et al. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Science Advances 2, e1601014 (2016). doi: 10.1126/sciadv.1601014
[26] Nan, K. W. et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Science Advances 4, eaau5849 (2018). doi: 10.1126/sciadv.aau5849
[27] Liu, Y. M. et al. 3D printed microstructures for flexible electronic devices. Nanotechnology 30, 414001 (2019). doi: 10.1088/1361-6528/ab2d5d
[28] Bai, W. J. et al. Freestanding 3D mesostructures, functional devices, and shape-programmable systems based on mechanically induced assembly with shape memory polymers. Advanced Materials 31, 1805615 (2019). doi: 10.1002/adma.201805615
[29] Kim, B. H. et al. Three-dimensional silicon electronic systems fabricated by compressive buckling process. ACS Nano 12, 4164-4171 (2018). doi: 10.1021/acsnano.8b00180
[30] Ning, X. et al. Mechanically active materials in three-dimensional mesostructures. Science Advances 4, eaat8313 (2018). doi: 10.1126/sciadv.aat8313
[31] Wang, H. L. et al. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling. Journal of the Mechanics and Physics of Solids 112, 187-208 (2018). doi: 10.1016/j.jmps.2017.12.002
[32] Ning, X. et al. Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review. Advanced Materials Interfaces 5, 1800284 (2018). doi: 10.1002/admi.201800284
[33] Ning, X. et al. 3D tunable, multiscale, and multistable vibrational micro-platforms assembled by compressive buckling. Advanced Functional Materials 27, 1605914 (2017). doi: 10.1002/adfm.201605914
[34] Didier, C., Kundu, A. & Rajaraman, S. Capabilities and limitations of 3D printed microserpentines and integrated 3D electrodes for stretchable and conformable biosensor applications. Microsystems & Nanoengineering 6, 15 (2020).
[35] Jeong, H. et al. Modular and reconfigurable wireless E-tattoos for personalized sensing. Advanced Materials Technologies 4, 1900117 (2019). doi: 10.1002/admt.201900117
[36] Wang, Y. et al. Epidermal electrodes with enhanced breathability and high sensing performance. Materials Today Physics 12, 100191 (2020). doi: 10.1016/j.mtphys.2020.100191
[37] Huang, Z. L. et al. Three-dimensional integrated stretchable electronics. Nature Electronics 1, 473-480 (2018). doi: 10.1038/s41928-018-0116-y
[38] Wang, C. F. et al. Materials and structures toward soft electronics. Advanced Materials 30, 1801368 (2018). doi: 10.1002/adma.201801368
[39] Lin, M. Y., Gutierrez, N. G. & Xu, S. Soft sensors form a network. Nature Electronics 2, 327-328 (2019). doi: 10.1038/s41928-019-0291-5
[40] Wang, B. H. et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nature Communications 11, 2405 (2020). doi: 10.1038/s41467-020-16268-8
[41] Crawford, K. E. et al. Advanced approaches for quantitative characterization of thermal transport properties in soft materials using thin, conformable resistive sensors. Extreme Mechanics Letters 22, 27-35 (2018). doi: 10.1016/j.eml.2018.04.002
[42] Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications 4, 1859 (2013). doi: 10.1038/ncomms2832
[43] Kim, D. H. et al. Epidermal electronics. Science 333, 838-843 (2011). doi: 10.1126/science.1206157
[44] Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019). doi: 10.1126/science.aau0780
[45] Tian, L. M. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nature Biomedical Engineering 3, 194-205 (2019). doi: 10.1038/s41551-019-0347-x
[46] Dagdeviren, C. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nature Communications 5, 4496 (2014). doi: 10.1038/ncomms5496
[47] Kim, J. et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Advanced Functional Materials 27, 1604373 (2017). doi: 10.1002/adfm.201604373
[48] Ma, Y. J. et al. Relation between blood pressure and pulse wave velocity for human arteries. Proceedings of the National Academy of Sciences of the United States of America 115, 11144-11149 (2018). doi: 10.1073/pnas.1814392115
[49] Wang, C. H. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature Biomedical Engineering 2, 687-695 (2018). doi: 10.1038/s41551-018-0287-x
[50] Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nature Biomedical Engineering 3, 47-57 (2019). doi: 10.1038/s41551-018-0336-5
[51] Zhao, Y. C. et al. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Advanced Functional Materials 30, 2001553 (2020). doi: 10.1002/adfm.202001553
[52] Jang, K. I. et al. Self-assembled three dimensional network designs for soft electronics. Nature Communications 8, 15894 (2017). doi: 10.1038/ncomms15894
[53] Zhang, Y. et al. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab on A Chip 19, 1545-1555 (2019). doi: 10.1039/C9LC00103D
[54] Kim, S. B. et al. Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition. Small 14, 1802876 (2018).
[55] Choi, J. et al. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sensors 4, 379-388 (2019). doi: 10.1021/acssensors.8b01218
[56] Zhao, Y. C. et al. A wearable freestanding electrochemical sensing system. Science Advances 6, eaaz0007 (2020). doi: 10.1126/sciadv.aaz0007
[57] Ortega, L. et al. Self-powered smart patch for sweat conductivity monitoring. Microsystems & Nanoengineering 5, 3 (2019).
[58] Li, K. et al. A generic soft encapsulation strategy for stretchable electronics. Advanced Functional Materials 29, 1806630 (2019). doi: 10.1002/adfm.201806630
[59] Xie, Z. Q. et al. Flexible and stretchable antennas for biointegrated electronics. Advanced Materials 32, 1902767 (2020). doi: 10.1002/adma.201902767
[60] Xie, Z. Q., Ji, B. W. & Huo, Q. Z. Mechanics design of stretchable near field communication antenna with serpentine wires. Journal of Applied Mechanics 85, 045001 (2018). doi: 10.1115/1.4039102
[61] Kim, J. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Science Advances 2, e1600418 (2016). doi: 10.1126/sciadv.1600418
[62] Jeong, Y. R. et al. A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Materials 9, e443 (2017). doi: 10.1038/am.2017.189
[63] Kim, J. et al. Miniaturized flexible electronic systems with wireless power and near-field communication capabilities. Advanced Functional Materials 25, 4761-4767 (2015). doi: 10.1002/adfm.201501590
[64] Kim, J. et al. Epidermal electronics with advanced capabilities in near-field communication. Small 11, 906-912 (2015). doi: 10.1002/smll.201402495
[65] Oh, J. Y. & Bao, Z. N. Second skin enabled by advanced electronics. Advanced Science 6, 1900186 (2019).
[66] Son, D. & Bao, Z. A. Nanomaterials in skin-inspired electronics: toward soft and robust skin-like electronic nanosystems. ACS Nano 12, 11731-11739 (2018).
[67] Kim, S. H. et al. An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS Nano 13, 6531-6539 (2019). doi: 10.1021/acsnano.9b00160
[68] Kang, J. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Advanced Materials 30, 1706846 (2018). doi: 10.1002/adma.201706846
[69] Oh, J. Y. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Science Advances 5, eaav3097 (2019). doi: 10.1126/sciadv.aav3097
[70] Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nature Nanotechnology 13, 1057-1065 (2018). doi: 10.1038/s41565-018-0244-6
[71] Jung, Y. H. et al. Bioinspired electronics for artificial sensory systems. Advanced Materials 31, 1803637 (2019). doi: 10.1002/adma.201803637
[72] Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95-99 (2013). doi: 10.1038/nature12083
[73] Gu, L. L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278-282 (2020). doi: 10.1038/s41586-020-2285-x
[74] Liu, Y. et al. Epidermal electronics for respiration monitoring via thermo-sensitive measuring. Materials Today Physics 13, 100199 (2020). doi: 10.1016/j.mtphys.2020.100199
[75] Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Science Advances 5, eaaw0536 (2019). doi: 10.1126/sciadv.aaw0536
[76] Lou, Z. et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23, 7-14 (2016). doi: 10.1016/j.nanoen.2016.02.053
[77] Krishnan, S. R. et al. Epidermal electronics for noninvasive, wireless, quantitative assessment of ventricular shunt function in patients with hydrocephalus. Science Translational Medicine 10, eaat8437 (2018). doi: 10.1126/scitranslmed.aat8437
[78] Ha, T. et al. A chest-laminated ultrathin and stretchable E-tattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals. Advanced Science 6, 1900290 (2019).
[79] Yeo, W. H. et al. Multifunctional epidermal electronics printed directly onto the skin. Advanced Materials 25, 2773-2778 (2013). doi: 10.1002/adma.201204426
[80] Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nature Medicine 26, 418-429 (2020). doi: 10.1038/s41591-020-0792-9
[81] Jeong, J. W. et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Advanced Healthcare Materials 3, 642-648 (2014). doi: 10.1002/adhm.201300334
[82] Leleux, P. et al. Conducting polymer electrodes for electroencephalography. Advanced Healthcare Materials 3, 490-493 (2014). doi: 10.1002/adhm.201300311
[83] Stauffer, F. et al. Skin conformal polymer electrodes for clinical ECG and EEG recordings. Advanced Healthcare Materials 7, 1700994 (2018). doi: 10.1002/adhm.201700994
[84] Norton, J. J. S. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proceedings of the National Academy of Sciences of the United States of America 112, 3920-3925 (2015). doi: 10.1073/pnas.1424875112
[85] Jang, K. I. et al. Ferromagnetic, folded electrode composite as a soft interface to the skin for long-term electrophysiological recording. Advanced Functional Materials 26, 7281-7290 (2016). doi: 10.1002/adfm.201603146
[86] Lee, K. H. et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nature Biomedical Engineering 4, 148-158 (2020). doi: 10.1038/s41551-019-0480-6
[87] Pang, C. et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials 11, 795-801 (2012). doi: 10.1038/nmat3380
[88] Wang, X. W. et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Advanced Materials 26, 1336-1342 (2014).
[89] Pang, C. et al. Highly skin-conformal microhairy sensor for pulse signal amplification. Advanced Materials 27, 634-640 (2015). doi: 10.1002/adma.201403807
[90] Park, D. Y. et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Advanced Materials 29, 1702308 (2017). doi: 10.1002/adma.201702308
[91] Sekine, T. et al. Fully printed wearable vital sensor for human pulse rate monitoring using ferroelectric polymer. Scientific Reports 8, 4442 (2018). doi: 10.1038/s41598-018-22746-3
[92] Pang, Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12, 2346-2354 (2018). doi: 10.1021/acsnano.7b07613
[93] Niu, S. M. et al. A wireless body area sensor network based on stretchable passive tags. Nature Electronics 2, 361-368 (2019). doi: 10.1038/s41928-019-0286-2
[94] Li, D. F. et al. Aging improvement in Cu-containing NTC ceramics prepared by co-precipitation method. Journal of Alloys and Compounds 582, 283-288 (2014). doi: 10.1016/j.jallcom.2013.08.014
[95] Han, S. et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Science Translational Medicine 10, eaan4950 (2018). doi: 10.1126/scitranslmed.aan4950
[96] Zhang, Y. H. et al. Theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature. Advanced Healthcare Materials 5, 119-127 (2016). doi: 10.1002/adhm.201500110
[97] Gao, Z. Y. et al. A self-healable bifunctional electronic skin. ACS Applied Materials & Interfaces 12, 24339-24347 (2020).
[98] Zhu, C. X. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nature Electronics 1, 183-190 (2018). doi: 10.1038/s41928-018-0041-0
[99] Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nature Materials 14, 728-736 (2015). doi: 10.1038/nmat4289
[100] Yamamoto, Y. et al. Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch. Advanced Healthcare Materials 6, 1700495 (2017). doi: 10.1002/adhm.201700495
[101] Hong, S. Y. et al. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Advanced Materials 28, 930-935 (2016). doi: 10.1002/adma.201504659
[102] Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Materials 12, 938-944 (2013). doi: 10.1038/nmat3755
[103] Tian, L. M. et al. Flexible and stretchable 3ω sensors for thermal characterization of human skin. Advanced Functional Materials 27, 1701282 (2017). doi: 10.1002/adfm.201701282
[104] Krishnan, S. R. et al. Wireless, battery-free epidermal electronics for continuous, quantitative, multimodal thermal characterization of skin. Small 14, 1803192 (2018). doi: 10.1002/smll.201803192
[105] Hua, Q. L. et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Communications 9, 244 (2018). doi: 10.1038/s41467-017-02685-9
[106] Sonner, Z. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9, 031301 (2015). doi: 10.1063/1.4921039
[107] Buono, M. J. Sweat ethanol concentrations are highly correlated with co-existing blood values in humans. Experimental Physiology 84, 401-404 (1999). doi: 10.1111/j.1469-445X.1999.01798.x
[108] Kamei, T. et al. Novel instrumentation for determination of ethanol concentrations in human perspiration by gas chromatography and a good interrelationship between ethanol concentrations in sweat and blood. Analytica Chimica Acta 365, 259-266 (1998). doi: 10.1016/S0003-2670(97)00673-9
[109] Oh, S. Y. et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and ph detection. ACS Applied Materials & Interfaces 10, 13729-13740 (2018).
[110] Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology 11, 566-572 (2016). doi: 10.1038/nnano.2016.38
[111] Abellán-Llobregat, A. et al. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosensors and Bioelectronics 91, 885-891 (2017). doi: 10.1016/j.bios.2017.01.058
[112] Martín, A. et al. Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sensors 2, 1860-1868 (2017). doi: 10.1021/acssensors.7b00729
[113] Jia, W. Z. et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Analytical Chemistry 85, 6553-6560 (2013). doi: 10.1021/ac401573r
[114] Biagi, S. et al. Simultaneous determination of lactate and pyruvate in human sweat using reversed-phase high-performance liquid chromatography: a noninvasive approach. Biomedical Chromatography 26, 1408-1415 (2012). doi: 10.1002/bmc.2713
[115] Sato, K. et al. Biology of sweat glands and their disorders. I. Normal sweat gland function. Journal of the American Academy of Dermatology 20, 537-563 (1989). doi: 10.1016/S0190-9622(89)70063-3
[116] Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proceedings of the National Academy of Sciences of the United States of America 114, 4625-4630 (2017). doi: 10.1073/pnas.1701740114
[117] Kohagura, K. et al. An association between uric acid levels and renal arteriolopathy in chronic kidney disease: a biopsy-based study. Hypertension Research 36, 43-49 (2013). doi: 10.1038/hr.2012.135
[118] Major, T. J. et al. An update on the genetics of hyperuricaemia and gout. Nature Reviews Rheumatology 14, 341-353 (2018). doi: 10.1038/s41584-018-0004-x
[119] Terkeltaub, R. Update on gout: new therapeutic strategies and options. Nature Reviews Rheumatology 6, 30-38 (2010). doi: 10.1038/nrrheum.2009.236
[120] Al-Tamer, Y. Y., Hadi, E. A. & Al-Badrani, I. E. I. Sweat urea, uric acid and creatinine concentrations in uraemic patients. Urological Research 25, 337-340 (1997). doi: 10.1007/BF01294662
[121] Russo, P. A., Mitchell, G. A. & Tanguay, R. M. Tyrosinemia: a review. Pediatric and Developmental Pathology 4, 212-221 (2001). doi: 10.1007/s100240010146
[122] Godek, S. F., Bartolozzi, A. R. & Godek, J. J. Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment. British Journal of Sports Medicine 39, 205-211 (2005). doi: 10.1136/bjsm.2004.011767
[123] Wang, S. Y. et al. Effect of Exercise-induced sweating on facial sebum, stratum corneum hydration, and skin surface pH in normal population. Skin Research and Technology 19, e312-e317 (2013). doi: 10.1111/j.1600-0846.2012.00645.x
[124] Ghaffari, R. et al. Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Advanced Functional Materials 30, 1907269 (2020). doi: 10.1002/adfm.201907269
[125] Yang, Y. R. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chemical Society Review 48, 1465-1491 (2019). doi: 10.1039/C7CS00730B
[126] Choi, J. et al. Skin-interfaced systems for sweat collection and analytics. Science Advances 4, eaar3921 (2018). doi: 10.1126/sciadv.aar3921
[127] Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921-937 (2020). doi: 10.1016/j.matt.2020.01.021
[128] Yang, Y. R. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nature Biotechnology 38, 217-224 (2020). doi: 10.1038/s41587-019-0321-x
[129] Ye, R. Q., James, D. K. & Tour, J. M. Laser-induced graphene: from discovery to translation. Advanced Materials 31, 1803621 (2019). doi: 10.1002/adma.201803621
[130] Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nature Communications 5, 5714 (2014). doi: 10.1038/ncomms6714
[131] Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Science Robotics 5, eaaz7946 (2020). doi: 10.1126/scirobotics.aaz7946
[132] Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509-514 (2016). doi: 10.1038/nature16521
[133] Reeder, J. T. et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Science Advances 5, eaau6356 (2019). doi: 10.1126/sciadv.aau6356
[134] Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Science Advances 5, eaav3294 (2019). doi: 10.1126/sciadv.aav3294
[135] Reeder, J. T. et al. Resettable skin interfaced microfluidic sweat collection devices with chemesthetic hydration feedback. Nature Communications 10, 5513 (2019). doi: 10.1038/s41467-019-13431-8
[136] Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature Communications 8, 14997 (2017). doi: 10.1038/ncomms14997
[137] Arakawa, T. et al. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: a novel cavitas sensor. Biosensors and Bioelectronics 84, 106-111 (2016). doi: 10.1016/j.bios.2015.12.014
[138] Lou, Z., Wang, L. L. & Shen, G. Z. Recent advances in smart wearable sensing systems. Advanced Materials Technologies 3, 1800444 (2018). doi: 10.1002/admt.201800444
[139] Huang, C. C. et al. Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes. Small 10, 3050-3057 (2014).
[140] Liu, H. W., Huang, Y. G. & Jiang, H. R. Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer. Proceedings of the National Academy of Sciences of the United States of America 113, 3982-3985 (2016). doi: 10.1073/pnas.1517953113
[141] Floreano, D. et al. Miniature curved artificial compound eyes. Proceedings of the National Academy of Sciences of the United States of America 110, 9267-9272 (2013). doi: 10.1073/pnas.1219068110
[142] Tang, X. et al. Towards infrared electronic eyes: flexible colloidal quantum dot photovoltaic detectors enhanced by resonant cavity. Small 15, 1804920 (2019). doi: 10.1002/smll.201804920
[143] Liu, X. Q. et al. Rapid engraving of artificial compound eyes from curved sapphire substrate. Advanced Functional Materials 29, 1900037 (2019). doi: 10.1002/adfm.201900037
[144] Wang, W. J. et al. Fabrication of hierarchical Micro/Nano compound eyes. ACS Applied Materials & Interfaces 11, 34507-34516 (2019).
[145] Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748-753 (2008). doi: 10.1038/nature07113
[146] Jung, I. et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proceedings of the National Academy of Sciences of the United States of America 108, 1788-1793 (2011). doi: 10.1073/pnas.1015440108
[147] Zhang, K. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nature Communications 8, 1782 (2017). doi: 10.1038/s41467-017-01926-1
[148] Xue, J. et al. Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Letters 18, 7628-7634 (2018). doi: 10.1021/acs.nanolett.8b03209
[149] Tsai, W. L. et al. Band tunable microcavity perovskite artificial human photoreceptors. Advanced Materials 31, 1900231 (2019).
[150] Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nature Communications 8, 1664 (2017). doi: 10.1038/s41467-017-01824-6
[151] Zhou, F. C. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nature Nanotechnology 14, 776-782 (2019). doi: 10.1038/s41565-019-0501-3
[152] Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62-66 (2020). doi: 10.1038/s41586-020-2038-x
[153] Chai, Y. In-sensor computing for machine vision. Nature 579, 32-33 (2020). doi: 10.1038/d41586-020-00592-6
[154] Mannoor, M. S. et al. 3D printed bionic ears. Nano Letters 13, 2634-2639 (2013). doi: 10.1021/nl4007744
[155] Yang, J. et al. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Advanced Materials 27, 1316-1326 (2015). doi: 10.1002/adma.201404794
[156] Kang, D. et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222-226 (2014). doi: 10.1038/nature14002
[157] Kang, S. et al. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Science Advances 4, eaas8772 (2018). doi: 10.1126/sciadv.aas8772
[158] Lee, S. et al. An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nature Communications 10, 2468 (2019). doi: 10.1038/s41467-019-10465-w
[159] Li, W. et al. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nature Communications 8, 15310 (2017).
[160] Wang, S. H. et al. Skin-inspired electronics: an emerging paradigm. Accounts of Chemical Research 51, 1033-1045 (2018). doi: 10.1021/acs.accounts.8b00015
[161] Yang, J. C. et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Advanced Materials 31, 1904765 (2019). doi: 10.1002/adma.201904765
[162] Sim, K. et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Science Advances 5, eaav5749 (2019). doi: 10.1126/sciadv.aav5749
[163] Chen, S. et al. Recent developments in graphene-based tactile sensors and E-skins. Advanced Materials Technologies 3, 1700248 (2018). doi: 10.1002/admt.201700248
[164] Boutry, C. M. et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Science Robotics 3, eaau6914 (2018). doi: 10.1126/scirobotics.aau6914
[165] Osborn, L. E. et al. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Science Robotics 3, eaat3818 (2018). doi: 10.1126/scirobotics.aat3818
[166] Liu, Y. M. et al. Skin-integrated graphene-embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing. Advanced Materials Technologies 4, 1900744 (2019). doi: 10.1002/admt.201900744
[167] Yu, X. G., Marks, T. J. & Facchetti, A. Metal oxides for optoelectronic applications. Nature Materials 15, 383-396 (2016). doi: 10.1038/nmat4599
[168] Lee, S. et al. A transparent bending-insensitive pressure sensor. Nature Nanotechnology 11, 472-478 (2016). doi: 10.1038/nnano.2015.324
[169] Liu, Y. M. et al. Recent progress on flexible nanogenerators toward self‐powered systems. InfoMat 2, 318-340 (2020). doi: 10.1002/inf2.12079
[170] Liu, Y. M. et al. Thin, skin-integrated, stretchable triboelectric nanogenerators for tactile sensing. Advanced Electronic Materials 6, 1901174 (2020). doi: 10.1002/aelm.201901174
[171] Gao, Z. et al. Stretchable transparent conductive elastomers for skin-integrated electronics. Journal of Materials Chemistry C 8, 15105 (2020).
[172] Yao, K. M. et al. Mechanics designs-performance relationships in epidermal triboelectric nanogenerators. Nano Energy 76, 105017 (2020). doi: 10.1016/j.nanoen.2020.105017
[173] Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Communications 5, 5747 (2014). doi: 10.1038/ncomms6747
[174] Sim, K. et al. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Science Advances 5, eaav9653 (2019). doi: 10.1126/sciadv.aav9653
[175] Park, J. et al. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Science Advances 1, e1500661 (2015). doi: 10.1126/sciadv.1500661
[176] Liu, Q. X. et al. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Advanced Science 7, 2000348 (2020). doi: 10.1002/advs.202000348
[177] Shi, W., Guo, Y. L. & Liu, Y. Q. When flexible organic field-effect transistors meet biomimetics: a prospective view of the internet of things. Advanced Materials 32, 1901493 (2020). doi: 10.1002/adma.201901493
[178] Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458-463 (2013). doi: 10.1038/nature12314
[179] Wang, S. H. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83-88 (2018). doi: 10.1038/nature25494
[180] Pu, X. et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Science Advances 3, e1700015 (2017). doi: 10.1126/sciadv.1700015
[181] Lee, W. W. et al. A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Science Robotics 4, eaax2198 (2019). doi: 10.1126/scirobotics.aax2198
[182] Kim, M. K. et al. Soft-packaged sensory glove system for human-like natural interaction and control of prosthetic hands. NPG Asia Materials 11, 43 (2019). doi: 10.1038/s41427-019-0143-9
[183] Shih, B. et al. Electronic skins and machine learning for intelligent soft robots. Science Robotics 5, eaaz9239 (2020). doi: 10.1126/scirobotics.aaz9239
[184] Charalambides, A. & Bergbreiter, S. Rapid manufacturing of mechanoreceptive skins for slip detection in robotic grasping. Advanced Materials Technologies 2, 1600188 (2017). doi: 10.1002/admt.201600188
[185] Sundaram, S. et al. Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698-702 (2019).
[186] Jeong, J. W. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Advanced Materials 25, 6839-6846 (2013). doi: 10.1002/adma.201301921
[187] Yiu, C. et al. Skin-like strain sensors enabled by elastomer composites for human–machine interfaces. Coatings 10, 711 (2020). doi: 10.3390/coatings10080711
[188] Shim, H. et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Science Advances 5, eaax4961 (2019). doi: 10.1126/sciadv.aax4961
[189] Someya, T. & Amagai, M. Toward a new generation of smart skins. Nature Biotechnology 37, 382-388 (2019). doi: 10.1038/s41587-019-0079-1
[190] Tee, B. C. K. et al. A skin-inspired organic digital mechanoreceptor. Sicence 350, 313-316 (2015). doi: 10.1126/science.aaa9306
[191] Tan, H. W. et al. Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nature Communications 11, 1369 (2020). doi: 10.1038/s41467-020-15105-2
[192] Zhu, M. L. et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Science Advances 6, eaaz8693 (2020). doi: 10.1126/sciadv.aaz8693
[193] Novich, S. D. & Eagleman, D. M. Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput. Experimental Brain Research 233, 2777-2788 (2015).
[194] Yu, X. G. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473-479 (2019). doi: 10.1038/s41586-019-1687-0
[195] Mishra, S. et al. Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Science Advances 6, eaay1729 (2020). doi: 10.1126/sciadv.aay1729
[196] Cañón Bermúdez, G. S. et al. Electronic-skin compasses for geomagnetic field-driven artificial magnetoreception and interactive electronics. Nature Electronics 1, 589-595 (2018). doi: 10.1038/s41928-018-0161-6
[197] Ge, J. et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nature Communications 10, 4405 (2019). doi: 10.1038/s41467-019-12303-5
[198] Cañón Bermúdez, G. S. et al. Magnetosensitive e-skins with directional perception for augmented reality. Science Advances 4, eaao2623 (2018). doi: 10.1126/sciadv.aao2623