[1] Winzer, P. J. & Essiambre, R. J. Advanced optical modulation formats. Proc. IEEE 94, 952-985 (2006). doi: 10.1109/JPROC.2006.873438
[2] Kikuchi, K. Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34, 157-179 (2016). doi: 10.1109/JLT.2015.2463719
[3] Savory, S. J. Digital filters for coherent optical receivers. Opt. Express 16, 804-817 (2008). doi: 10.1364/OE.16.000804
[4] Ip, E. & Kahn, J. M. Digital equalization of chromatic dispersion and polarization mode dispersion. J. Lightwave Technol. 25, 2033-2043 (2007). doi: 10.1109/JLT.2007.900889
[5] Liu, X., Chandrasekhar, S. & Leven, A. Digital self-coherent detection. Opt. Express 16, 792-803 (2008). doi: 10.1364/OE.16.000792
[6] Cheng, J. C. et al. Comparison of coherent and IMDD transceivers for intra datacenter optical interconnects. In Proc. Optical Fiber Communication Conference, paper W1F.2 (Optical Society of America, San Diego, 2019).
[7] Dong, P. et al. 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. In Proc. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, paper PDP5C.6 (Optical Society of America, Anaheim, 2013).
[8] Winzer, P. J. et al. Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM. J. Lightwave Technol. 28, 547-556 (2010). doi: 10.1109/JLT.2009.2031922
[9] Zhong, K. P. et al. Digital signal processing for short-reach optical communications: a review of current technologies and future trends. J. Lightwave Technol. 36, 377-400 (2018). doi: 10.1109/JLT.2018.2793881
[10] Chen, X. et al. Kramers−Kronig receivers for 100-km datacenter interconnects. J. Lightwave Technol. 36, 79-89 (2018). doi: 10.1109/JLT.2018.2793460
[11] Hu, Q. et al. Advanced modulation formats for high-performance short-reach optical interconnects. Opt. Express 23, 3245-3259 (2015). doi: 10.1364/OE.23.003245
[12] Zhang, L. et al. C-band single wavelength 100-Gb/s IM-DD transmission over 80-km SMF without CD compensation using SSB-DMT. In Proc. Optical Fiber Communication Conference, paper Th4A.2 (Optical Society of America, Los Angeles, 2015).
[13] Che, D., Sun, C. & Shieh, W. Optical field recovery in stokes space. J. Lightwave Technol. 37, 451-460 (2019). doi: 10.1109/JLT.2018.2879181
[14] Che, D., Sun, C. & Shieh, W. Direct detection of the optical field beyond single polarization mode. Opt. Express 26, 3368-3380 (2018). doi: 10.1364/OE.26.003368
[15] Lowery, A. J., Du, L. & Armstrong, J. Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems. In Proc. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, paper PDP39 (Optical Society of America, Anaheim, 2006).
[16] Randel, S. et al. 100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme. In Proc. 2015 European Conference on Optical Communication 1−3 (IEEE, Valencia, 2015).
[17] Li, Z. et al. SSBI mitigation and the Kramers−Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation. J. Lightwave Technol. 35, 1887-1893 (2017). doi: 10.1109/JLT.2017.2684298
[18] Peng, W. R. et al. Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique. Opt. Express 17, 9099-9111 (2009). doi: 10.1364/OE.17.009099
[19] Mecozzi, A., Antonelli, C. & Shtaif, M. Kramers-Kronig coherent receiver. Optica 3, 1220-1227 (2016). doi: 10.1364/OPTICA.3.001220
[20] 文献全部内容项
[21] Antonelli, C., Mecozzi, A. & Shtaif, M. Kramers−Kronig PAM transceiver and two-sided polarization-multiplexed Kramers−Kronig transceiver. J. Lightwave Technol. 36, 468-475 (2018). doi: 10.1109/JLT.2018.2796306
[22] Le, S. T. et al. 1.6Tbps WDM direct detection transmission with virtual-carrier over 1200km. In Proc. Optical Fiber Communication Conference, paper Tu2D.5 (Optical Society of America, San Diego, 2018).
[23] Erkılınç, M. S. et al. Spectrally efficient WDM Nyquist pulse-shaped 16-QAM subcarrier modulation transmission with direct detection. J. Lightwave Technol. 33, 3147-3155 (2015). doi: 10.1109/JLT.2015.2427111
[24] Chen, X. et al. Block-wise phase switching for double-sideband direct detected optical OFDM signals. Opt. Express 21, 13436-13441 (2013). doi: 10.1364/OE.21.013436
[25] Li, A. et al. 61 Gbits/s direct-detection optical OFDM based on blockwise signal phase switching with signal-to-signal beat noise cancellation. Opt. Lett. 38, 2614-2616 (2013). doi: 10.1364/OL.38.002614
[26] Xie, C. J. et al. Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection. Opt. Express 20, 1164-1171 (2012). doi: 10.1364/OE.20.001164
[27] Bo, T. W. & Kim, H. Kramers−Kronig receiver operable without digital upsampling. Opt. Express 26, 13810-13818 (2018). doi: 10.1364/OE.26.013810
[28] Sun, C. et al. Investigation of single-and multi-carrier modulation formats for Kramers-Kronig and SSBI iterative cancellation receivers. Opt. Lett. 44, 1785-1788 (2019).
[29] Lowery, A. J., Wang, T. Y. & Corcoran, B. Clipping-enhanced Kramers-Kronig receivers. In Proc. Optical Fiber Communication Conference paper M1H.2 (Optical Society of America, San Diego, 2019).
[30] Chen, X., Chandrasekhar, S. & Winzer, P. Self-coherent systems for short reach transmission. In Proc. European Conference on Optical Communication 1−3 (IEEE, Rome, 2018).
[31] Peng, W. R. et al. Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems. J. Lightwave Technol. 27, 1332-1339 (2009). doi: 10.1109/JLT.2008.2012172