[1] Agrawal, G. Nonlinear Fiber Optics. 5th edn. (Academic Press, Amsterdam, 2013).
[2] Närhi, M. et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun. 7, 13675 (2016). doi: 10.1038/ncomms13675
[3] Haus, H. A. & Wong, W. S. Solitons in optical communications. Rev. Mod. Phys. 68, 423-443 (1996). doi: 10.1103/RevModPhys.68.423
[4] Travers, J. C. et al. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photonics 13, 547-554 (2019). doi: 10.1038/s41566-019-0416-4
[5] Mao, D. et al. WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm. Opt. Express 23, 27509-27519 (2015).
[6] Ament, C., Polynkin, P. & Moloney, J. V. Supercontinuum generation with femtosecond self-healing Airy pulses. Phys. Rev. Lett. 107, 243901 (2011). doi: 10.1103/PhysRevLett.107.243901
[7] Song, R. et al. A hundreds of watt all-fiber near-infrared supercontinuum. Laser Phys. Lett. 10, 065402 (2013). doi: 10.1088/1612-2011/10/6/065402
[8] Ismaeel, R. et al. Nonlinear microfiber loop resonators for resonantly enhanced third harmonic generation. Opt. Lett. 37, 5121-5123 (2012). doi: 10.1364/OL.37.005121
[9] Huang, P. et al. Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers. J. Opt. Soc. Am. B 36, 300-305 (2019). doi: 10.1364/JOSAB.36.000300
[10] Erkintalo, M. et al. Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs. Phys. Rev. Lett. 109, 223904 (2012). doi: 10.1103/PhysRevLett.109.223904
[11] Österberg, U. & Margulis, W. Dye laser pumped by Nd: YAG laser pulses frequency doubled in a glass optical fiber. Opt. Lett. 11, 516-518 (1986). doi: 10.1364/OL.11.000516
[12] Luo, W. et al. Efficient surface second-harmonic generation in slot micro/nano-fibers. Opt. Express 21, 11554-11561 (2013). doi: 10.1364/OE.21.011554
[13] Richard, S. Second-harmonic generation in tapered optical fibers. J. Opt. Soc. Am. B 27, 1504-1512 (2010). doi: 10.1364/JOSAB.27.001504
[14] Gouveia, M. A. et al. Second harmonic generation and enhancement in microfibers and loop resonators. Appl. Phys. Lett. 102, 201120 (2013). doi: 10.1063/1.4807767
[15] Chen, J. H. et al. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light Sci. Appl. 8, 8 (2019). doi: 10.1038/s41377-018-0115-9
[16] Cheng, T. L. et al. Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber. Opt. Lett. 39, 2145-2147 (2014). doi: 10.1364/OL.39.002145
[17] Yuan, J. H. et al. Generation of second-harmonics near ultraviolet wavelengths from femtosecond pump pulses. IEEE Photon. Technol. Lett. 28, 1719-1722 (2016). doi: 10.1109/LPT.2016.2530744
[18] Tombelaine, V. et al. Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation. Opt. Lett. 33, 2011-2013 (2008). doi: 10.1364/OL.33.002011
[19] Canagasabey, A. et al. High-average-power second-harmonic generation from periodically poled silica fibers. Opt. Lett. 34, 2483-2485 (2009). doi: 10.1364/OL.34.002483
[20] Zhu, E. Y. et al. Measurement of χ(2) symmetry in a poled fiber. Opt. Lett. 35, 1530-1532 (2010). doi: 10.1364/OL.35.001530
[21] Corbari, C. et al. All-fiber frequency-doubled visible laser. Opt. Lett. 39, 6505-6508 (2014). doi: 10.1364/OL.39.006505
[22] Corbari, C. et al. Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation. Appl. Phys. Lett. 86, 071106 (2005). doi: 10.1063/1.1868075
[23] Canagasabey, A. et al. Broadly tunable second-harmonic generation in periodically poled silica fibers. Opt. Lett. 32, 1863-1865 (2007). doi: 10.1364/OL.32.001863
[24] Ménard, J. M. & Russell, P. S. T. Phase-matched electric-field-induced second-harmonic generation in Xe-filled hollow-core photonic crystal fiber. Opt. Lett. 40, 3679-3682 (2015). doi: 10.1364/OL.40.003679
[25] Ménard, J. M., Köttig, F. & Russell, P. S. T. Broadband electric-field-induced LP01 and LP02 second harmonic generation in Xe-filled hollow-core PCF. Opt. Lett. 41, 3795-3798 (2016). doi: 10.1364/OL.41.003795
[26] Zhou, X. et al. Strong second-harmonic generation in atomic layered GaSe. J. Am. Chem. Soc. 137, 7994-7997 (2015). doi: 10.1021/jacs.5b04305
[27] Kumar, N. et al. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 87, 161403 (2013). doi: 10.1103/PhysRevB.87.161403
[28] Gan, X. T. et al. Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe. Light Sci. Appl. 7, 17126 (2018). doi: 10.1038/lsa.2017.126
[29] Jie, W. J. et al. Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets. Angew. Chem. Int. Ed. 54, 1185-1189 (2015). doi: 10.1002/anie.201409837
[30] Guo, J. et al. Doped GaSe crystals for laser frequency conversion. Light Sci. Appl. 4, e362 (2015). doi: 10.1038/lsa.2015.135
[31] Lacroix, S. et al. Tapered monomode optical fibers: understanding large power transfer. Appl. Opt. 25, 4421-4425 (1986). doi: 10.1364/AO.25.004421
[32] Li, W. et al. Ultrafast all-optical graphene modulator. Nano Lett. 14, 955-959 (2014). doi: 10.1021/nl404356t
[33] Cassidy, D. T., Johnson, D. C. & Hill, K. O. Wavelength-dependent transmission of monomode optical fiber tapers. Appl. Opt. 24, 945-950 (1985). doi: 10.1364/AO.24.000945
[34] Shen, Y. R. The Principles of Nonlinear Optics. (Wiley-Interscience, New York, 1984).
[35] Boyd, R. W. Nonlinear Optics. 3rd edn. (Elsevier, Singapore, 2010).
[36] Liu, S. et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat. Commun. 9, 2507 (2018). doi: 10.1038/s41467-018-04944-9
[37] Tang, Y. H. et al. Layer- and frequency-dependent second harmonic generation in reflection from GaSe atomic crystals. Phys. Rev. B 94, 125302 (2016). doi: 10.1103/PhysRevB.94.125302
[38] Chen, K. et al. Graphene photonic crystal fibre with strong and tunable light-matter interaction. Nat. Photonics 13, 754-759 (2019). doi: 10.1038/s41566-019-0492-5
[39] Gan, X. T. et al. Graphene-assisted all-fiber phase shifter and switching. Optica 2, 468-471 (2015). doi: 10.1364/OPTICA.2.000468
[40] Mao, D. et al. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep. 6, 23583 (2016). doi: 10.1038/srep23583