[1] Fercher, A. F. et al. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995). doi: 10.1016/0030-4018(95)00119-S
[2] Lu, G. L. & Fei, B. W. Medical hyperspectral imaging: a review. J. Biomed. Opt. 19, 010901 (2014). doi: 10.1117/1.JBO.19.1.010901
[3] Long, D. A. Raman Spectroscopy (McGraw-Hill, New York, 1977).
[4] Reeves, J. B. III Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma 158, 3–14 (2010). doi: 10.1016/j.geoderma.2009.04.005
[5] Bol'Shakov, A. A. et al. Laser-induced breakdown spectroscopy in industrial and security applications. Appl. Opt. 49, C132–C142 (2010). doi: 10.1364/AO.49.00C132
[6] Yun, S. H. et al. High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength. Opt. Express 11, 3598–3604 (2003).
[7] Leitgeb, R., Hitzenberger, C. K. & Fercher, A. F. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003). doi: 10.1364/OE.11.000889
[8] Dorrer, C. et al. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. J. Optical Soc. Am. B 17, 1795–1802 (2000). doi: 10.1364/JOSAB.17.001795
[9] Alfano, R. R. The Supercontinuum Laser Source. (Springer, New York, 2006).
[10] Brown, W. J., Kim, S. & Wax, A. Noise characterization of supercontinuum sources for low-coherence interferometry applications. J. Optical Soc. Am. A 31, 2703–2710 (2014). doi: 10.1364/JOSAA.31.002703
[11] Corwin, K. L. et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber. Appl. Phys. B 77, 269–277 (2003). doi: 10.1007/s00340-003-1175-x
[12] Mandel, L. Fluctuations of photon beams and their correlations. Proc. Phys. Soc. 72, 1037–1048 (1958). doi: 10.1088/0370-1328/72/6/312
[13] Park, B. H. et al. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm. Opt. Express 13, 3931–3944 (2005).
[14] Götzinger, E., Pircher, M. & Hitzenberger, C. K. High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt. Express 13, 10217–10229 (2005). doi: 10.1364/OPEX.13.010217
[15] Chong, S. P. et al. Quantitative microvascular hemoglobin mapping using visible light spectroscopic optical coherence tomography. Biomed. Opt. Express 6, 1429–1450 (2015). doi: 10.1364/BOE.6.001429
[16] Makita, S., Fabritius, T. & Yasuno, Y. Full-range, high-speed, high-resolution 1-µm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. Opt. Express 16, 8406–8420 (2008). doi: 10.1364/OE.16.008406
[17] de Boer, J. F. et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003). doi: 10.1364/OL.28.002067
[18] Choma, M. A. et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003). doi: 10.1364/OE.11.002183
[19] Shin, S. et al. Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography. IEEE Photonics Technol. Lett. 22, 1057–1059 (2010). doi: 10.1109/LPT.2010.2050058
[20] Kho, A. & Srinivasan, V. J. Compensating spatially dependent dispersion in visible light OCT. Opt. Lett. 44, 775–778 (2019). doi: 10.1364/OL.44.000775
[21] van Rossum, A. G. S. H. et al. Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Müller glia cells. Hum. Mol. Genet. 15, 2659–2672 (2006). doi: 10.1093/hmg/ddl194
[22] West, E. L. et al. Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors. Exp. Eye Res. 86, 601–611 (2008). doi: 10.1016/j.exer.2008.01.004
[23] Kocaoglu, O. P. et al. Adaptive optics optical coherence tomography at 1 MHz. Biomed. Opt. Express 5, 4186–4200 (2014). doi: 10.1364/BOE.5.004186
[24] Goodman, J. W. Statistical properties of laser speckle patterns. In Laser Speckle and Related Phenomena (ed. Dainty, J. C.) 9–75 (Berlin, Heidelberg, Springer, 1975).
[25] Boas, D. A. & Dunn, A. K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15, 011109 (2010). doi: 10.1117/1.3285504