[1] Lee, M. M. et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643-647 (2012). doi: 10.1126/science.1228604
[2] Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316-319 (2013). doi: 10.1038/nature12340
[3] Liu, M. Z., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395-398 (2013). doi: 10.1038/nature12509
[4] Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897-903 (2014). doi: 10.1038/nmat4014
[5] Hoye, R. L. Z. et al. Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors. Adv. Mater. 27, 1414-1419 (2015). doi: 10.1002/adma.201405044
[6] Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476-480 (2015). doi: 10.1038/nature14133
[7] Zhu, H. M. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636-642 (2015). doi: 10.1038/nmat4271
[8] Senanayak, S. P. et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017). doi: 10.1126/sciadv.1601935
[9] Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234-1237 (2015). doi: 10.1126/science.aaa9272
[10] Chao, X. et al. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light.: Sci. Appl. 6, e17023 (2017). doi: 10.1038/lsa.2017.23
[11] Li, J. H. et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29, 1603885 (2017). doi: 10.1002/adma.201603885
[12] Fang, H. H. et al. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light. Sci. Appl. 5, e16056 (2016). doi: 10.1038/lsa.2016.56
[13] Zhang, T. Y. et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017). doi: 10.1126/sciadv.1700841
[14] Zhao, Y. C. et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light. Sci. Appl. 6, e16243 (2017). doi: 10.1038/lsa.2016.243
[15] Lin, J. et al. Thermochromic halide perovskite solar cells. Nat. Mater. 17, 261-267 (2018). doi: 10.1038/s41563-017-0006-0
[16] Kim, Y. H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248-1254 (2015). doi: 10.1002/adma.201403751
[17] Shi, Z. F. et al. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett. 17, 313-321 (2017). doi: 10.1021/acs.nanolett.6b04116
[18] Sun, H. Z. et al. Chemically addressable perovskite nanocrystals for light-emitting applications. Adv. Mater. 29, 1701153 (2017). doi: 10.1002/adma.201701153
[19] Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249-253 (2018). doi: 10.1038/s41586-018-0576-2
[20] Lin, K. B. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245-248 (2018). doi: 10.1038/s41586-018-0575-3
[21] Ramasamy, P. et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52, 2067-2070 (2016). doi: 10.1039/C5CC08643D
[22] Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92-95 (2016). doi: 10.1126/science.aag2700
[23] Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745-750 (2017). doi: 10.1126/science.aam7093
[24] Wang, Y. et al. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater. 27, 1605088 (2017). doi: 10.1002/adfm.201605088
[25] Wang, Y. et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater. 27, 7101-7108 (2015). doi: 10.1002/adma.201503573
[26] Sutton, R. J. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016). doi: 10.1002/aenm.201502458
[27] Chen, W. W. et al. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small 13, 1604085 (2017). doi: 10.1002/smll.201604085
[28] Li, X. M. et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13, 1603996 (2017). doi: 10.1002/smll.201603996
[29] Wu, C. et al. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment. Adv. Funct. Mater. 27, 1700338 (2017). doi: 10.1002/adfm.201700338
[30] Wei, Y., Cheng, Z. Y. & Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310-350 (2019). doi: 10.1039/C8CS00740C
[31] Li, X. M. et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435-2445 (2016). doi: 10.1002/adfm.201600109
[32] Tan, Y. S. et al. Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 10, 3784-3792 (2018). doi: 10.1021/acsami.7b17166
[33] Wang, H. C. et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem. Int. Ed. 55, 7924-7929 (2016). doi: 10.1002/anie.201603698
[34] Jia, C. et al. CsPbX3/Cs4PbX6 core/shell perovskite nanocrystals. Chem. Commun. 54, 6300-6303 (2018). doi: 10.1039/C8CC02802H
[35] Tang, X. S. et al. CsPbBr3/CdS core/shell structure quantum dots for inverted light-emitting diodes application. Front. Chem. 7, 499 (2019). doi: 10.3389/fchem.2019.00499
[36] Zhong, Q. X. et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano 12, 8579-8587 (2018). doi: 10.1021/acsnano.8b04209
[37] Wang, B. et al. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability. ACS Appl. Mater. Interfaces 10, 23303-23310 (2018). doi: 10.1021/acsami.8b04198
[38] Shoyama, K. et al. Effects of water on the forward and backward conversions of lead(ii) iodide to methylammonium lead perovskite. J. Mater. Chem. A 5, 23815-23821 (2017). doi: 10.1039/C7TA08042E
[39] Wu, L. Z. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 17, 5799-5804 (2017). doi: 10.1021/acs.nanolett.7b02896
[40] Turedi, B. et al. Water-induced dimensionality reduction in metal-halide perovskites. J. Phys. Chem. C 122, 14128-14134 (2018). doi: 10.1021/acs.jpcc.8b01343
[41] Zhang, X. Y. et al. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew. Chem. Int. Ed. 57, 3337-3342 (2018). doi: 10.1002/anie.201710869
[42] Jana, A. & Kim, K. S. Water-stable, fluorescent organic−inorganic hybrid and fully inorganic perovskites. ACS Energy Lett. 3, 2120-2126 (2018). doi: 10.1021/acsenergylett.8b01394
[43] Huang, H. et al. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2, 2071-2083 (2017). doi: 10.1021/acsenergylett.7b00547
[44] Chen, L. C. et al. An ultrasonic synthesis method for high-luminance perovskite quantum dots. Ceram. Int. 43, 16032-16035 (2017). doi: 10.1016/j.ceramint.2017.08.066
[45] Liang, Y. C. et al. Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: non-equilibrium sorption fabrication and light-emitting diodes application. J. Colloid Interface Sci. 529, 1-10 (2018). doi: 10.1016/j.jcis.2018.05.100
[46] Park, Y. S. et al. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386-10393 (2015). doi: 10.1021/acsnano.5b04584
[47] Li, X. M. et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater. 29, 1701185 (2017). doi: 10.1002/adma.201701185
[48] Lee, S. et al. Amine-based passivating materials for enhanced optical properties and performance of organic-inorganic perovskites in light-emitting diodes. J. Phys. Chem. Lett. 8, 1784-1792 (2017). doi: 10.1021/acs.jpclett.7b00372
[49] Wang, Y. et al. Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. Commun. Phys. 1, 96 (2018). doi: 10.1038/s42005-018-0098-0
[50] Yang, D. W. et al. Fast diffusion of native defects and impurities in perovskite solar cell material CH3NH3PbI3. Chem. Mater. 28, 4349-4357 (2016). doi: 10.1021/acs.chemmater.6b01348
[51] Minh, D. N. et al. Room-temperature synthesis of widely tunable formamidinium lead halide perovskite nanocrystals. Chem. Mater. 29, 5713-5719 (2017). doi: 10.1021/acs.chemmater.7b01705
[52] Zou, S. H. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 139, 11443-11450 (2017). doi: 10.1021/jacs.7b04000
[53] Luo, B. B. et al. Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability. Angew. Chem. Int. Ed. 55, 8864-8868 (2016). doi: 10.1002/anie.201602236
[54] Xuan, T. T. et al. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale 9, 15286-15290 (2017). doi: 10.1039/C7NR04179A
[55] Cai, Y. T. et al. Improved stability of CsPbBr3 perovskite quantum dots achieved by suppressing interligand proton transfer and applying a polystyrene coating. Nanoscale 10, 21441-21450 (2018). doi: 10.1039/C8NR06607H
[56] Ma, K. Z. et al. In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. J. Mater. Chem. C 5, 9398-9404 (2017). doi: 10.1039/C7TC02847D