[1] Plum, E. & Zheludev, N. I. Chiral mirrors. Appl. Phys. Lett. 106, 221901 (2015). doi: 10.1063/1.4921969
[2] Lodahl, P. et al. Chiral quantum optics. Nature 541, 473-480 (2017). doi: 10.1038/nature21037
[3] Barik, S. et al. A topological quantum optics interface. Science 359, 666-668 (2018). doi: 10.1126/science.aaq0327
[4] Yoo, S. & Park, Q. H. Chiral light-matter interaction in optical resonators. Phys. Rev. Lett. 114, 203003 (2015). doi: 10.1103/PhysRevLett.114.203003
[5] Guimond, P. et al. Chiral quantum optics with V-level atoms and coherent quantum feedback. Phys. Rev. A 94, 033829 (2016). doi: 10.1103/PhysRevA.94.033829
[6] Flannery, J. et al. Fabry-Pérot cavity formed with dielectric metasurfaces in a hollow-core fiber. ACS Photonics 5, 337-341 (2018). doi: 10.1021/acsphotonics.7b01154
[7] Chen, X. et al. High-finesse fabry-perot cavities with bidimensional Si3N4 photonic-crystal slabs. Light.: Sci. Appl. 6, e16190 (2017). doi: 10.1038/lsa.2016.190
[8] Oh, S. S. & Hess, O. Chiral metamaterials: enhancement and control of optical activity and circular dichroism. Nano Convergence 2, 24 (2015). doi: 10.1186/s40580-015-0058-2
[9] Bai, B. F. et al. Optical activity in planar chiral metamaterials: theoretical study. Phys. Rev. A 76, 023811 (2007). doi: 10.1103/PhysRevA.76.023811
[10] Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513-1515 (2009). doi: 10.1126/science.1177031
[11] Zhu, A. Y. et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light.: Sci. Appl. 7, 17158 (2017).
[12] Schäferling, M. Chiral Nanophotonics (Springer, Cham, 2017).
[13] Rajaei, M. et al. Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures. ACS Photonics 6, 924-931 (2019). doi: 10.1021/acsphotonics.8b01584
[14] Yang, S. Y. et al. Spin-selective transmission in chiral folded metasurfaces. Nano Lett. 19, 3432-3439 (2019). doi: 10.1021/acs.nanolett.8b04521
[15] Hentschel, M. et al. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017). doi: 10.1126/sciadv.1602735
[16] Zhao, Y., Belkin, M. A. & Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012). doi: 10.1038/ncomms1877
[17] Zhou, J. F. et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys. Rev. B 86, 035448 (2012). doi: 10.1103/PhysRevB.86.035448
[18] Cui, Y. H. et al. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 14, 1021-1025 (2014). doi: 10.1021/nl404572u
[19] Ma, W., Cheng, F. & Liu, Y. M. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326-6334 (2018). doi: 10.1021/acsnano.8b03569
[20] Chen, Y., Yang, X. D. & Gao, J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light.: Sci. Appl. 7, 84 (2018). doi: 10.1038/s41377-018-0086-x
[21] Wu, Z. L. et al. High-performance ultrathin active chiral metamaterials. ACS Nano 12, 5030-5041 (2018). doi: 10.1021/acsnano.8b02566
[22] Chen, Y., Gao, J. & Yang, X. D. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano Lett. 18, 520-527 (2018). doi: 10.1021/acs.nanolett.7b04515
[23] Haverkamp, C. et al. Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits. Nanotechnology 28, 055303 (2017). doi: 10.1088/1361-6528/28/5/055303
[24] Frank, B. et al. Large-area 3D chiral plasmonic structures. ACS Nano 7, 6321-6329 (2013). doi: 10.1021/nn402370x
[25] Plum, E., Fedotov, V. A. & Zheludev, N. I. Extrinsic electromagnetic chirality in metamaterials. J. Opt. A: Pure Appl. Opt. 11, 074009 (2009). doi: 10.1088/1464-4258/11/7/074009
[26] Yoo, T. S. H. et al. Circularly polarized images with contrast reversal using pseudochiral metasurfaces. ACS Photonics 5, 4068-4073 (2018). doi: 10.1021/acsphotonics.8b00730
[27] Papasimakis, N. et al. Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 15, 263-271 (2016). doi: 10.1038/nmat4563
[28] Wu, C. H. et al. Spectrally selective chiral silicon metasurfaces based on infrared fano resonances. Nat. Commun. 5, 3892 (2014). doi: 10.1038/ncomms4892
[29] Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005). doi: 10.1103/PhysRevLett.95.227401
[30] Wang, Z. J. et al. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics 3, 2096-2101 (2016). doi: 10.1021/acsphotonics.6b00533
[31] Kang, L. et al. Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror. Nano Lett. 17, 7102-7109 (2017). doi: 10.1021/acs.nanolett.7b03882
[32] Xiao, S. Y. et al. Helicity-preserving omnidirectional plasmonic mirror. Adv. Optical Mater. 4, 654-658 (2016). doi: 10.1002/adom.201500705
[33] Jing, L. Q. et al. Chiral metamirrors for broadband spin-selective absorption. Appl. Phys. Lett. 110, 231103 (2017). doi: 10.1063/1.4985132
[34] Fernandez-Corbaton, I., Fruhnert, M. & Rockstuhl, C. Objects of maximum electromagnetic chirality. Phys. Rev. X 6, 031013 (2016).
[35] Fan, S. H. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002). doi: 10.1103/PhysRevB.65.235112
[36] Hu, L. et al. Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes. Sci. Rep. 7, 11151 (2017). doi: 10.1038/s41598-017-11571-9
[37] Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017). doi: 10.1103/PhysRevLett.119.243901
[38] Hsu, C. W. et al. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48
[39] Fan, S. H., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Optical Soc. Am. A 20, 569-572 (2003). doi: 10.1364/JOSAA.20.000569
[40] Eismann, J. S., Neugebauer, M. & Banzer, P. Exciting a chiral dipole moment in an achiral nanostructure. Optica 5, 954-959 (2018). doi: 10.1364/OPTICA.5.000954
[41] Karagodsky, V. & Chang-Hasnain, C. J. Physics of near-wavelength high contrast gratings. Opt. Express 20, 10888-10895 (2012). doi: 10.1364/OE.20.010888
[42] Ma, Z. J. et al. All-dielectric planar chiral metasurface with gradient geometric phase. Opt. Express 26, 6067-6078 (2018). doi: 10.1364/OE.26.006067
[43] Ye, W. M. et al. Large chiroptical effects in planar chiral metamaterials. Phys. Rev. Appl. 7, 054003 (2017). doi: 10.1103/PhysRevApplied.7.054003
[44] Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659-670 (2018). doi: 10.1038/s41566-018-0246-9
[45] Stangner, T. et al. Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser. Appl. Opt. 56, 5427-5435 (2017). doi: 10.1364/AO.56.005427
[46] Hu, J. P. et al. All-dielectric metasurface circular dichroism waveplate. Sci. Rep. 7, 41893 (2017). doi: 10.1038/srep41893
[47] Takeda, H., Takashima, T. & Yoshino, K. Flat photonic bands in two-dimensional photonic crystals with Kagome lattices. J. Phys.: Condens. Matter 16, 6317-6324 (2004). doi: 10.1088/0953-8984/16/34/028