[1] Kuriki, K., Koike, Y. & Okamoto, Y. Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chem. Rev. 102, 2347-2356 (2002). doi: 10.1021/cr010309g
[2] Eliseeva, S. V. & Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189-227 (2010). doi: 10.1039/B905604C
[3] Bünzli, J. C. G. & Eliseeva, S. V. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 28, 824-842 (2010). doi: 10.1016/S1002-0721(09)60208-8
[4] Ye, H. Q. et al. Organo-erbium systems for optical amplification at telecommunications wavelengths. Nat. Mater. 13, 382-386 (2014). doi: 10.1038/nmat3910
[5] Bünzli, J. C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729-2755 (2010). doi: 10.1021/cr900362e
[6] Montgomery, C. P. et al. Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. Acc. Chem. Res. 42, 925-937 (2009). doi: 10.1021/ar800174z
[7] Armelao, L. et al. Design of luminescent lanthanide complexes: from molecules to highly efficient photo-emitting materials. Coord. Chem. Rev. 254, 487-505 (2010). doi: 10.1016/j.ccr.2009.07.025
[8] Beeby, A. et al. Porphyrin sensitization of circularly polarised near-IR lanthanide luminescence: enhanced emission with nucleic acid binding. Chem. Commun. 0, 1183-1184 (2000).
[9] Weiss, R. & Fischer, J. Lanthanide phthalocyanine complexes. In (eds Kadish, K. M., Smith, K. M. & Guilard, R.) The Porphyrin Handbook. Ch. 105 (San Diego: Academic Press, 2003).
[10] Wong, W. K. et al. Synthesis, structure, reactivity and photoluminescence of lanthanide(Ⅲ) monoporphyrinate complexes. Coord. Chem. Rev. 251, 2386-2399 (2007). doi: 10.1016/j.ccr.2006.11.014
[11] Lu, G. F. et al. Dysprosium heteroleptic corrole-phthalocyanine triple-decker complexes: synthesis, crystal structure, and electrochemical and magnetic properties. Inorg. Chem. 56, 11503-11512 (2017). doi: 10.1021/acs.inorgchem.7b01060
[12] Zhao, H. M., Zang, L. X. & Guo, C. S. Influence of lanthanide ion energy levels on luminescence of corresponding metalloporphyrins. Phys. Chem. Chem. Phys. 19, 7728-7732 (2017). doi: 10.1039/C7CP00370F
[13] Amokrane, A. et al. Role of π-radicals in the spin connectivity of clusters and networks of Tb double-decker single molecule magnets. ACS Nano 11, 10750-10760 (2017). doi: 10.1021/acsnano.7b05804
[14] Serrano, G. et al. Bilayer of terbium double-decker single-molecule magnets. J. Phys. Chem. C 120, 13581-13586 (2016). doi: 10.1021/acs.jpcc.6b03676
[15] He, H. S. Near-infrared emitting lanthanide complexes of porphyrin and BODIPY dyes. Coord. Chem. Rev. 273-274, 87-99 (2014). doi: 10.1016/j.ccr.2013.11.006
[16] Bulach, V., Sguerra, F. & Hosseini, M. W. Porphyrin lanthanide complexes for NIR emission. Coord. Chem. Rev. 256, 1468-1478 (2012). doi: 10.1016/j.ccr.2012.02.027
[17] Montalban, A. G. et al. Lanthanide porphyrazine sandwich complexes: synthetic, structural and spectroscopic investigations. J. Chem. Soc. Dalton Trans. 0, 3269-3273 (2001).
[18] Birin, K. P., Gorbunova, Y. G. & Tsivadze, A. Y. Selective one-step synthesis of triple-decker (porphyrinato)(phthalocyaninato) early lanthanides: the balance of concurrent processes. Dalton Trans. 40, 11539-11549 (2011). doi: 10.1039/c1dt11141h
[19] Tarakanova, E. N. et al. Double-decker bis(tetradiazepinoporphyrazinato) rare earth complexes: crucial role of intramolecular hydrogen bonding. Dalton Trans. 45, 12041-12052 (2016). doi: 10.1039/C6DT01779G
[20] Zang, L. X. et al. Water-soluble gadolinium porphyrin as a multifunctional theranostic agent: Phosphorescence-based oxygen sensing and photosensitivity. Dyes Pigments 142, 465-471 (2017). doi: 10.1016/j.dyepig.2017.03.056
[21] Peter, H. Inorganic, organometallic and coordination chemistry. In (eds Kadish, K. M., Smith, K. M. & Guilard, R.) The Porphyrin Handbook. Ch. 18 (San Diego: Academic Press, 2003).
[22] Zhang, T. et al. Water-soluble mitochondria-specific ytterbium complex with impressive NIR emission. J. Am. Chem. Soc. 133, 20120-20122 (2011). doi: 10.1021/ja207689k
[23] Zhang, T. et al. Porphyrin-based ytterbium complexes targeting anionic phospholipid membranes as selective biomarkers for cancer cell imaging. Chem. Commun. 49, 7252-7254 (2013). doi: 10.1039/c3cc43469a
[24] Zhang, T. et al. In vivo selective cancer-tracking gadolinium eradicator as new-generation photodynamic therapy agent. Proc. Natl. Acad. Sci. USA 111, E5492-E5497 (2014). doi: 10.1073/pnas.1414499111
[25] Ng, D. K. P. & Jiang, J. Z. Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes. Chem. Soc. Rev. 29, 433-442 (1997).
[26] Spyroulias, G. A. & Coutsolelos, A. G. Evidence of protonated and deprotonated forms of symmetrical and asymmetrical lutetium(Ⅲ) porphyrin double-deckers by 1H-NMR spectroscopy. Inorg. Chem. 35, 1382-1385 (1996). doi: 10.1021/ic950796g
[27] Stewart, J. MOPAC2016. http://OpenMOPAC.net. (2016).
[28] Filho, M. A. M. et al. Parameters for the RM1 quantum chemical calculation of complexes of the trications of thulium, ytterbium and lutetium. PLoS ONE 11, e0154500 (2016). doi: 10.1371/journal.pone.0154500
[29] Dutra, J. D. L., Bispo, T. D. & Freire, R. O. LUMPAC lanthanide luminescence software: efficient and user friendly. J. Comput. Chem. 35, 772-775 (2014). doi: 10.1002/jcc.23542
[30] Neese, F. The ORCA program system. Wiley Interdiscip. Rev. 2, 73-78 (2012).
[31] Granovsky, A. A. Firefly version 8.2.0. http://classic.chem.msu.su/gran/firefly/index.html. (2013).
[32] Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347-1363 (1993). doi: 10.1002/jcc.540141112
[33] Otsuki, J. STM studies on porphyrins. Coord. Chem. Rev. 254, 2311-2341 (2010). doi: 10.1016/j.ccr.2009.12.038
[34] Otsuki, J. et al. Arrays of double-decker porphyrins on highly oriented pyrolytic graphite. Langmuir 22, 5708-5715 (2006). doi: 10.1021/la0608617
[35] Inose, T. et al. Switching of single‐molecule magnetic properties of Tb-porphyrin double‐decker complexes and observation of their supramolecular structures on a carbon surface. Chemistry 20, 11237 (2014). doi: 10.1002/chem.201403984
[36] Sautet, P. Images of adsorbates with the scanning tunneling microscope: theoretical approaches to the contrast mechanism. Chem. Rev. 97, 1097-1116 (1997). doi: 10.1021/cr9600823
[37] Palmer, R. E. & Guo, Q. Imaging thin films of organic molecules with the scanning tunnelling microscope. Phys. Chem. Chem. Phys. 4, 4275-4284 (2002). doi: 10.1039/b202462d
[38] Wang, H. N. et al. Chain‐length‐adjusted assembly of substituted porphyrins on graphite. Surf. Interface Anal. 32, 266-270 (2001). doi: 10.1002/sia.1051
[39] Foley, T. J. et al. Facile preparation and photophysics of near-infrared luminescent lanthanide(Ⅲ) monoporphyrinate complexes. Inorg. Chem. 42, 5023-5032 (2003). doi: 10.1021/ic034217g
[40] Tanner, P. A. et al. Misconceptions in electronic energy transfer: bridging the gap between chemistry and physics. Chem. Soc. Rev. 47, 5234-5265 (2018). doi: 10.1039/C8CS00002F
[41] Liu, Z. H. et al. Brightness calibrates particle size in single particle fluorescence imaging. Opt. Lett. 40, 1242-1245 (2015). doi: 10.1364/OL.40.001242
[42] Shavaleev, N. M. et al. Influence of symmetry on the luminescence and radiative lifetime of nine-coordinate europium complexes. Inorg. Chem. 54, 9166-9173 (2015). doi: 10.1021/acs.inorgchem.5b01580
[43] Luo, S. L. et al. A review of NIR dyes in cancer targeting and imaging. Biomaterials 32, 7127-7138 (2011). doi: 10.1016/j.biomaterials.2011.06.024
[44] Ormond, A. B. & Freeman, H. S. Dye sensitizers for photodynamic therapy. Materials 6, 817-840 (2013). doi: 10.3390/ma6030817
[45] Malta, O. L. Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. J. Noncryst. Solids 354, 4770-4776 (2008). doi: 10.1016/j.jnoncrysol.2008.04.023
[46] Werts, M. H. V., Jukes, R. T. F. & Verhoeven, J. W. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys. 4, 1542-1548 (2002). doi: 10.1039/b107770h
[47] Langlois, A. et al. Metal dependence on the bidirectionality and reversibility of the singlet energy transfer in artificial special pair-containing dyads. Inorg. Chem. 56, 2506-2517 (2017). doi: 10.1021/acs.inorgchem.6b02684
[48] Liao, M. S., Watts, J. D. & Huang, M. J. DFT/TDDFT study of lanthanideIII mono- and bisporphyrin complexes. J. Phys. Chem. A 110, 13089-13098 (2006). doi: 10.1021/jp0632236
[49] Berera, R., Van Grondelle, R. & Kennis, J. T. M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 101, 105-118 (2009). doi: 10.1007/s11120-009-9454-y
[50] Masih, D. et al. Photoinduced triplet-state electron transfer of platinum porphyrin: a one-step direct method for sensing iodide with an unprecedented detection limit. J. Mater. Chem. A 3, 6733-6738 (2015). doi: 10.1039/C4TA07033J
[51] Parusel, A. B. J., Wondimagegn, T. & Ghosh, A. Do nonplanar porphyrins have red-shifted electronic spectra? A DFT/SCI study and reinvestigation of a recent proposal. J. Am. Chem. Soc. 122, 6371-6374 (2000). doi: 10.1021/ja000757q
[52] Bose, R. et al. Direct femtosecond observation of charge carrier recombination in ternary semiconductor nanocrystals: the effect of composition and shelling. J. Phys. Chem. C 119, 3439-3446 (2015). doi: 10.1021/acs.jpcc.5b00204
[53] El-Ballouli, A. O. et al. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface. J. Am. Chem. Soc. 136, 6952-6959 (2014). doi: 10.1021/ja413254g