[1] Li, H. Y. High sensitivity gas sensor based on IR spectroscopy technology and application. Photonic Sensors 6, 127-131 (2016). doi: 10.1007/s13320-015-0290-8
[2] Casey, J. G., Collier-Oxandale, A. & Hannigan, M. Performance of artificial neural networks and linear models to quantify 4 trace gas species in an oil and gas production region with low-cost sensors. Sensors and Actuators B:Chemical 283, 504-514 (2019). doi: 10.1016/j.snb.2018.12.049
[3] Zhou, Y. , Gao, C. & Guo, Y. C. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet-ZnO nanowire heterojunctions at room temperature. Journal of Materials Chemistry A 6, 10286-10296 (2018).
[4] Ma, Y. F. et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Optics Express 21, 1008-1019 (2013).
[5] Azhar, M. et al. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath. Applied Physics B 123, 268 (2017).
[6] Yang, W. et al. Real-time molecular imaging of near-surface tissue using Raman spectroscopy. Light:Science & Applications 11, 90 (2022).
[7] Lin, H. N. & Cheng, J. X. Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science. eLight 3, 6 (2023). doi: 10.1186/s43593-022-00038-8
[8] Zhang, Z. D. et al. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. Light:Science & Applications 11, 274 (2022).
[9] Chen, G. Y. et al. Revealing unconventional host–guest complexation at nanostructured interface by surface-enhanced Raman spectroscopy. Light:Science & Applications 10, 85 (2021).
[10] Winkowski, M. & Stacewicz, T. Low noise, open-source QEPAS system with instrumentation amplifier. Scientific Reports 9, 1838 (2019). doi: 10.1038/s41598-019-38509-7
[11] Liu, K. et al. A novel photoacoustic spectroscopy gas sensor using a low cost polyvinylidene fluoride film. Sensors and Actuators B:Chemical 277, 571-575 (2018). doi: 10.1016/j.snb.2018.09.037
[12] Hundt, P. M. et al. Multi-species trace gas sensing with dual-wavelength QCLs. Applied Physics B 124, 108 (2018).
[13] Tomberg, T. et al. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy. Scientific Reports 8, 1848 (2018). doi: 10.1038/s41598-018-20087-9
[14] Helman, M. et al. Off-beam quartz-enhanced photoacoustic spectroscopy-based sensor for hydrogen sulfide trace gas detection using a mode-hop-free external cavity quantum cascade laser. Applied Physics B 123, 141 (2017).
[15] Lin, H. Y. et al. Ppb-level gas detection using on-beam quartz-enhanced photoacoustic spectroscopy based on a 28 kHz tuning fork. Photoacoustics 25, 100321 (2022). doi: 10.1016/j.pacs.2021.100321
[16] Zifarelli, A. et al. Multi-gas quartz-enhanced photoacoustic sensor for environmental monitoring exploiting a Vernier effect-based quantum cascade laser. Photoacoustics 28, 100401 (2022). doi: 10.1016/j.pacs.2022.100401
[17] Zhang, C., Qiao, S. D. & Ma, Y. F. Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity. Photoacoustics 30, 100467 (2023). doi: 10.1016/j.pacs.2023.100467
[18] Menduni, G. et al. High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition. Photoacoustics 26, 100349 (2022). doi: 10.1016/j.pacs.2022.100349
[19] Zhang, C. et al. Differential quartz-enhanced photoacoustic spectroscopy. Applied Physics Letters 122, 241103 (2023). doi: 10.1063/5.0157161
[20] Liu, Y. H. & Ma, Y. F. Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology [Invited]. Chinese Optics Letters 21, 033001 (2023). doi: 10.3788/COL202321.033001
[21] Qiao, S. D. et al. Super tiny quartz-tuning-fork-based light-induced thermoelastic spectroscopy sensing. Optics Letters 48, 419-422 (2023). doi: 10.1364/OL.482351
[22] Russo, S. D. et al. Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy. Optics Express 28, 19074-19084 (2020). doi: 10.1364/OE.393292
[23] Hu, L. E. et al. Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing. Optics Letters 45, 1894-1897 (2020). doi: 10.1364/OL.388754
[24] Ma, Y. F. et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Optics Express 26, 32103-32110 (2018). doi: 10.1364/OE.26.032103
[25] He, Y. et al. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell. Optics Letters 44, 1904-1907 (2019). doi: 10.1364/OL.44.001904
[26] Liu, X. N., Qiao, S. D. & Ma, Y. F. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 μm diode laser and adaptive Savitzky-Golay filtering. Optics Express 30, 1304-1313 (2022).
[27] Zhang, Q. D. et al. Long-path quartz tuning fork enhanced photothermal spectroscopy gas sensor using a high power Q-switched fiber laser. Measurement 156, 107601 (2020). doi: 10.1016/j.measurement.2020.107601
[28] Ma, Y. F. et al. Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork. Applied Physics Letters 116, 011103 (2020). doi: 10.1063/1.5129014
[29] Pan, Y. F. et al. All-optical light-induced thermoacoustic spectroscopy for remote and non-contact gas sensing. Photoacoustics 27, 100389 (2022). doi: 10.1016/j.pacs.2022.100389
[30] Russo, S. D. et al. Photoacoustic spectroscopy for gas sensing: a comparison between piezoelectric and interferometric readout in custom quartz tuning forks. Photoacoustics 17, 100155 (2020). doi: 10.1016/j.pacs.2019.100155
[31] Gong, Z. F. et al. High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection. Sensors and Actuators B:Chemical 247, 290-295 (2017). doi: 10.1016/j.snb.2017.03.009
[32] Wang, Q. Y. & Ma, Z. H. Feedback-stabilized interrogation technique for optical Fabry–Perot acoustic sensor using a tunable fiber laser. Optics & Laser Technology 51, 43-46 (2013).
[33] Lin, C., Yan, X. Y. & Huang, Y. C. An all-optical off-beam quartz-enhanced photoacoustic spectroscopy employing double-pass acoustic microresonators. Optics Communications 503, 127447 (2022). doi: 10.1016/j.optcom.2021.127447
[34] Lin, C., Liao, Y. & Fang, F. Trace gas detection system based on all-optical quartz-enhanced photoacoustic spectroscopy. Applied Spectroscopy 73, 1327-1333 (2019).
[35] Kim, Y. S. , Dagalakis, N. G. & Choi, Y. M. Optical fiber Fabry-Pérot micro-displacement sensor for MEMS in-plane motion stage. Microelectronic Engineering 187-188, 6-13 (2018).
[36] Gordon, I. E. et al. The HITRAN2020 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer 277, 107949 (2022). doi: 10.1016/j.jqsrt.2021.107949
[37] Ma, Y. F. et al. Highly Sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy. Ultrafast Science 3, 0024 (2023). doi: 10.34133/ultrafastscience.0024
[38] Wu, H. P. et al. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nature Communications 8, 15331 (2017). doi: 10.1038/ncomms15331
[39] Li, B. et al. Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level. Sensors and Actuators B:Chemical 358, 131510 (2022). doi: 10.1016/j.snb.2022.131510
[40] Ma, Y. M. et al. High-robustness near-infrared methane sensor system using self-correlated heterodyne-based light-induced thermoelastic spectroscopy. Sensors and Actuators B:Chemical 370, 132429 (2022). doi: 10.1016/j.snb.2022.132429