[1] Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780-1782 (2006). doi: 10.1126/science.1125907
[2] Chen, H., Wu, B. I., Zhang, B. & Kong, J. A. Electromagnetic wave interactions with a metamaterial cloak. Phys. Rev. Lett. 99, 063903 (2007). doi: 10.1103/PhysRevLett.99.063903
[3] Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nat. Photonics 1, 224-227 (2007). doi: 10.1038/nphoton.2007.28
[4] Li, J. & Pendry, J. B. Hiding under the Carpet: A new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008). doi: 10.1103/PhysRevLett.101.203901
[5] Yang, Y. et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv. Mater. 28, 6866-6871 (2016). doi: 10.1002/adma.201600625
[6] Alù, A. & Engheta, N. Multifrequency optical invisibility cloak with layered plasmonic shells. Phys. Rev. Lett. 100, 113901 (2008). doi: 10.1103/PhysRevLett.100.113901
[7] Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011). doi: 10.1103/PhysRevLett.106.024301
[8] Ergin, T., Stenger, N., Brenner, P., Pendry, J. B. & Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337-339 (2010). doi: 10.1126/science.1186351
[9] Ma, H. F. & Cui, T. J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 1, 1-6 (2010).
[10] Chen, H. et al. Ray-optics cloaking devices for large objects in incoherent natural light. Nat. Commun. 4, 2652 (2013). doi: 10.1038/ncomms3652
[11] Lan, C., Yang, Y., Geng, Z., Li, B. & Zhou, J. Electrostatic field invisibility cloak. Sci. Rep. 5, 16416 (2015). doi: 10.1038/srep16416
[12] Narayana, S. & Sato, Y. Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012). doi: 10.1103/PhysRevLett.108.214303
[13] Han, T., Bai, X., Thong, J. T. L., Li, B. & Qiu, C. W. Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials. Adv. Mater. 26, 1731-1734 (2014). doi: 10.1002/adma.201304448
[14] Jiang, W. X., Luo, C. Y., Ge, S., Qiu, C. W. & Cui, T. J. An optically controllable transformation-dc illusion device. Adv. Mater. 27, 4628-4633 (2015). doi: 10.1002/adma.201500729
[15] Xiang Jiang, W., Yang Luo, C., Lei Mei, Z. & Jun Cui, T. An ultrathin but nearly perfect direct current electric cloak. Appl. Phys. Lett. 102, 014102 (2013). doi: 10.1063/1.4774301
[16] Jiang, W. et al. Room-temperature broadband quasistatic magnetic cloak. NPG Asia Mater. 9, e341 (2017). doi: 10.1038/am.2016.197
[17] Yao, Z., Luo, J. & Lai, Y. Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions. Opt. Express 25, 30931 (2017). doi: 10.1364/OE.25.030931
[18] Hou, Q., Zhao, X., Meng, T. & Liu, C. Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage. Appl. Phys. Lett. 109, 103506 (2016). doi: 10.1063/1.4962473
[19] Lai, Y. et al. Illusion optics: The optical transformation of an object into another object. Phys. Rev. Lett. 102, 253902 (2009). doi: 10.1103/PhysRevLett.102.253902
[20] Liu, M., Mei, Z. L., Ma, X. & Cui, T. J. Dc illusion and its experimental verification. Appl. Phys. Lett. 101, 051905 (2012). doi: 10.1063/1.4742133
[21] Edwards, B., Alù, A., Silveirinha, M. G. & Engheta, N. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett. 103, 153901 (2009). doi: 10.1103/PhysRevLett.103.153901
[22] Xu, H., Shi, X., Gao, F., Sun, H. & Zhang, B. Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014). doi: 10.1103/PhysRevLett.112.054301
[23] Chen, T. H., Yang, F. & Mei, Z. L. A simple and flexible thermal illusion device and its experimental verification. Phys. Status Solidi 212, 1746-1750 (2015). doi: 10.1002/pssa.201431899
[24] Lai, Y., Chen, H., Zhang, Z. Q. & Chan, C. T. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys. Rev. Lett. 102, 093901 (2009). doi: 10.1103/PhysRevLett.102.093901
[25] Zheng, B. et al. Concealing arbitrary objects remotely with multi-folded transformation optics. Light Sci. Appl. 5, e16177 (2016). doi: 10.1038/lsa.2016.177
[26] Rahm, M. et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations. Photonics Nanostruct.-Fundam. Appl. 6, 87-95 (2007).
[27] Yang, F., Mei, Z. L., Jin, T. Y. & Cui, T. J dc Electric invisibility cloak. Phys. Rev. Lett. 109, 053902 (2012). doi: 10.1103/PhysRevLett.109.053902
[28] Yang, F., Mei, Z. L., Yang, X. Y., Jin, T. Y. & Cui, T. J. A negative conductivity material makes a dc invisibility cloak hide an object at a distance. Adv. Funct. Mater. 23, 4306-4310 (2013). doi: 10.1002/adfm.201300226
[29] Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. Experiments on transformation thermodynamics: Molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013). doi: 10.1103/PhysRevLett.110.195901
[30] Bückmann, T., Kadic, M., Schittny, R. & Wegener, M. Mechanical cloak design by direct lattice transformation. Proc. Natl Acad. Sci. U.S.A. 112, 4930-4934 (2015). doi: 10.1073/pnas.1501240112
[31] Ma, Q., Mei, Z. L., Zhu, S. K., Jin, T. Y. & Cui, T. J. Experiments on active cloaking and illusion for laplace equation. Phys. Rev. Lett. 111, 173901 (2013). doi: 10.1103/PhysRevLett.111.173901