[1] O'Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009). doi: 10.1038/nphoton.2009.229
[2] Lundskog, A. et al. Direct generation of linearly polarized photon emission with designated orientations from site-controlled InGaN quantum dots. Light Sci. Appl. 3, 139 (2014). doi: 10.1038/lsa.2014.20
[3] Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nat. Photon. 8, 356–363 (2014). doi: 10.1038/nphoton.2014.53
[4] Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015). doi: 10.1103/RevModPhys.87.347
[5] Müller, K. et al. Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett. 114, 233601 (2015). doi: 10.1103/PhysRevLett.114.233601
[6] Hu, J. Y. et al. Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016). doi: 10.1038/lsa.2016.144
[7] Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016). doi: 10.1126/science.aah6875
[8] KUHN, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002). doi: 10.1103/PhysRevLett.89.067901
[9] Kako, S. et al. A gallium nitride single-photon source operating at 200 K. Nat. Mater. 5, 887–892 (2006). doi: 10.1038/nmat1763
[10] Deshpande, S. et al. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire. Nat. Commun. 4, 1675 (2013). doi: 10.1038/ncomms2691
[11] Zhang, L. et al. Single photon emission from site-controlled InGaN/GaN quantum dots. Appl. Phys. Lett. 103, 192114 (2013). doi: 10.1063/1.4830000
[12] Holmes, M. J. et al. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982–986 (2014). doi: 10.1021/nl404400d
[13] Arita, M. et al. Ultraclean single photon emission from a GaN quantum dot. Nano Lett. 17, 2902–2907 (2017). doi: 10.1021/acs.nanolett.7b00109
[14] Lymperakis, L. et al. Elastically frustrated rehybridization: origin of chemical order and compositional limits in InGaN quantum wells. Phys. Rev. Mater. 2, 011601 (2018). doi: 10.1103/PhysRevMaterials.2.011601
[15] Zhang, L. et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun. 8, 580 (2017). doi: 10.1038/s41467-017-00681-7
[16] Nothaft, M. et al. Electrically driven photon antibunching from a single molecule at room temperature. Nat. Commun. 3, 628 (2012). doi: 10.1038/ncomms1637
[17] Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000). doi: 10.1038/35035032
[18] Ye, Y. X. et al. Single photon emission from deep-level defects in monolayer WSe2. Phys. Rev. B 95, 245313 (2017). doi: 10.1103/PhysRevB.95.245313
[19] Shayeganfar, F. et al. Effects of functionalization and side defects on single-photon emission in boron nitride quantum dots. Phys. Rev. B 96, 165307 (2017). doi: 10.1103/PhysRevB.96.165307
[20] Berhane, A. M. et al. Bright room-temperature single-photon emission from defects in gallium nitride. Adv. Mater. 29, 1605092 (2017). doi: 10.1002/adma.201605092
[21] Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017). doi: 10.1038/s41467-017-00810-2
[22] Tran, T. T. et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10, 7331–7338 (2016). doi: 10.1021/acsnano.6b03602
[23] Zhou, Y. et al. Room temperature solid-state quantum emitters in the telecom range. Sci. Adv. 4, eaar3580 (2018). doi: 10.1126/sciadv.aar3580
[24] Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015). doi: 10.1021/acs.nanolett.5b03312
[25] Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015). doi: 10.1038/nnano.2015.60
[26] Kern, J. et al. Nanoscale positioning of single-photon emitters in atomically thin WSe2. Adv. Mater. 28, 7101–7105 (2016). doi: 10.1002/adma.201600560
[27] Tran, T. T. et al. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016). doi: 10.1038/nnano.2015.242
[28] Proscia, N. V. et al. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018). doi: 10.1364/OPTICA.5.001128
[29] Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018). doi: 10.1063/1.5020038
[30] Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016). doi: 10.1038/nphoton.2016.23
[31] Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016). doi: 10.1038/nphoton.2016.186
[32] Wang, P. et al. Lattice-symmetry-driven epitaxy of hierarchical GaN nanotripods. Adv. Funct. Mater. 27, 1604854 (2017). doi: 10.1002/adfm.201604854
[33] Loitsch, B. et al. Tunable quantum confinement in ultrathin, optically active semiconductor nanowires via reverse-reaction growth. Adv. Mater. 27, 2195–2202 (2015). doi: 10.1002/adma.201404900
[34] Sun, X. X. et al. Single photon source based on an InGaN quantum dot in a site-controlled optical horn structure. Appl. Phys. Lett. 115, 022101 (2019). doi: 10.1063/1.5100323
[35] Sun, X. X. et al. Single‐photon emission from a further confined InGaN/GaN quantum disc via reverse‐reaction growth. Quantum Eng. 1, e20 (2019).
[36] Gačević, Ž. et al. Emission of linearly polarized single photons from quantum dots contained in nonpolar, semipolar, and polar sections of pencil-like InGaN/GaN nanowires. ACS Photon. 4, 657–664 (2017). doi: 10.1021/acsphotonics.6b01030
[37] Kim, J. H. et al. Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk. Sci. Rep. 3, 2150 (2013). doi: 10.1038/srep02150
[38] Ostapenko, I. A. et al. Exciton acoustic-phonon coupling in single GaN/AlN quantum dots. Phys. Rev. B 85, 081303 (2012). doi: 10.1103/PhysRevB.85.081303
[39] Zhang, X. B. et al. Influence of electron-phonon interaction on the optical properties of III nitride semiconductors. J. Phys. Condens. Matter 13, 7053–7074 (2001). doi: 10.1088/0953-8984/13/32/312
[40] Zhao, H. & Kalt, H. Energy-dependent Huang-Rhys factor of free excitons. Phys. Rev. B 68, 125309 (2003). doi: 10.1103/PhysRevB.68.125309
[41] Makino, T. et al. Size dependence of exciton-longitudinal-optical-phonon coupling in ZnO/Mg0.27Zn0.73O quantum wells. Phys. Rev. B 66, 233305 (2002).
[42] Heitz, R. et al. Existence of a phonon bottleneck for excitons in quantum dots. Phys. Rev. B 64, 241305 (2001). doi: 10.1103/PhysRevB.64.241305
[43] Henning, J. C. M. et al. Electron-phonon coupling in a δ-doped n-i-p structure in GaAs. Phys. Rev. B 53, 15802–15809 (1996). doi: 10.1103/PhysRevB.53.15802
[44] Huang, K. Lattice relaxation and multiphonon transitions. Contemp. Phys. 22, 599–612 (1981). doi: 10.1080/00107518108231558
[45] Zhang, Y. et al. Phonon sidebands of excitons bound to isoelectronic impurities in semiconductors. Phys. Rev. B 47, 6330–6339 (1993). doi: 10.1103/PhysRevB.47.6330
[46] Holmes, M. et al. Spectral diffusion and its influence on the emission linewidths of site-controlled GaN nanowire quantum dots. Phys. Rev. B 92, 115447 (2015). doi: 10.1103/PhysRevB.92.115447
[47] Springbett, H. P. et al. Improvement of single photon emission from InGaN QDs embedded in porous micropillars. Appl. Phys. Lett. 113, 101107 (2018). doi: 10.1063/1.5045843
[48] Kremling, S. et al. Single photon emission from InGaN/GaN quantum dots up to 50 K. Appl. Phys. Lett. 100, 061115 (2012). doi: 10.1063/1.3683521