[1] Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684-691 (2017). doi: 10.1364/OPTICA.4.000684
[2] Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357-360 (2016). doi: 10.1126/science.aad4811
[3] Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018). doi: 10.1126/science.aan8083
[4] Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193-203 (2017). doi: 10.1364/OPTICA.4.000193
[5] Johnson, A. R. et al. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Optics Letters 40, 5117-5120 (2015). doi: 10.1364/OL.40.005117
[6] Halir, R. et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Optics Letters 37, 1685-1687 (2012). doi: 10.1364/OL.37.001685
[7] Porcel, M. A. G. et al. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Optics Express 25, 1542-1554 (2017). doi: 10.1364/OE.25.001542
[8] Orieux, A. et al. Semiconductor devices for entangled photon pair generation: a review. Reports on Progress in Physics 80, 076001 (2017). doi: 10.1088/1361-6633/aa6955
[9] Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light:Science & Applications 6, e17100 (2017).
[10] Wang, Y. C., Jöns, K. D. & Sun, Z. P. Integrated photon-pair sources with nonlinear optics. Applied Physics Reviews 8, 011314 (2021). doi: 10.1063/5.0030258
[11] Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nature Photonics 13, 146-157 (2019). doi: 10.1038/s41566-018-0347-5
[12] Oser, D. et al. High-quality photonic entanglement out of a stand-alone silicon chip. npj Quantum Information 6, 31 (2020). doi: 10.1038/s41534-020-0263-7
[13] Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274-279 (2017). doi: 10.1038/nature22387
[14] Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559 (2011). doi: 10.1126/science.1193968
[15] Karpov, M. et al. Photonic chip-based soliton frequency combs covering the biological imaging window. Nature Communications 9, 1146 (2018). doi: 10.1038/s41467-018-03471-x
[16] Leo Tsui, H. C. et al. Graphene oxide integrated silicon photonics for detection of vapour phase volatile organic compounds. Scientific Reports 10, 9592 (2020). doi: 10.1038/s41598-020-66389-9
[17] Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887-891 (2018). doi: 10.1126/science.aao3924
[18] Thomson, D. et al. Roadmap on silicon photonics. Journal of Optics 18, 073003 (2016). doi: 10.1088/2040-8978/18/7/073003
[19] Bauters, J. F. et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Optics Express 19, 3163-3174 (2011). doi: 10.1364/OE.19.003163
[20] Pfeiffer, M. H. P. et al. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE Journal of Selected Topics in Quantum Electronics 24, 6101411 (2018).
[21] Bristow, A. D., Rotenberg, N. & Van Driel, H. M. Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm. Applied Physics Letters 90, 191104 (2007). doi: 10.1063/1.2737359
[22] Wang, Y. C. et al. Enhancing Si3N4 waveguide nonlinearity with heterogeneous integration of few-layer WS2. ACS Photonics 8, 2713-2721 (2021). doi: 10.1021/acsphotonics.1c00767
[23] Autere, A. et al. Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. Physical Review B 98, 115426 (2018). doi: 10.1103/PhysRevB.98.115426
[24] Fan, X. P. et al. Broken symmetry induced strong nonlinear optical effects in spiral WS2 nanosheets. ACS Nano 11, 4892-4898 (2017). doi: 10.1021/acsnano.7b01457
[25] Zhang, Y. J. et al. Enhanced four-wave mixing with MoS2 on a silicon waveguide. Journal of Optics 22, 025503 (2020). doi: 10.1088/2040-8986/ab68b4
[26] Liu, L. H. et al. Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides. Photonics Research 3, 206-209 (2015). doi: 10.1364/PRJ.3.000206
[27] Woodward, R. I. et al. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Materials 4, 011006 (2017).
[28] Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nature Nanotechnology 10, 407-411 (2015). doi: 10.1038/nnano.2015.73
[29] Le, C. T. et al. Nonlinear optical characteristics of monolayer MoSe2. Annalen der Physik 528, 551-559 (2016). doi: 10.1002/andp.201600006
[30] Autere, A. et al. Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy. The Journal of Physical Chemistry Letters 8, 1343-1350 (2017). doi: 10.1021/acs.jpclett.7b00140
[31] Ji, M. X. et al. Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator. Optics Express 23, 18679-18685 (2015). doi: 10.1364/OE.23.018679
[32] Ishizawa, A. et al. Optical nonlinearity enhancement with graphene-decorated silicon waveguides. Scientific Reports 7, 45520 (2017). doi: 10.1038/srep45520
[33] Zhou, H. et al. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides. Applied Physics Letters 105, 091111 (2014). doi: 10.1063/1.4894830
[34] Feng, Q. et al. Enhanced optical Kerr nonlinearity of graphene/Si hybrid waveguide. Applied Physics Letters 114, 071104 (2019). doi: 10.1063/1.5064832
[35] Hong, S. Y. et al. Optical third-harmonic generation in graphene. Physical Review X 3, 021014 (2013).
[36] Yang, Y. Y. et al. Invited article: enhanced four-wave mixing in waveguides integrated with graphene oxide. APL Photonics 3, 120803 (2018). doi: 10.1063/1.5045509
[37] Lamont, M. R. E., Okawachi, Y. & Gaeta, A. L. Route to stabilized ultrabroadband microresonator-based frequency combs. Optics Letters 38, 3478-3481 (2013). doi: 10.1364/OL.38.003478
[38] Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Optics Letters 36, 3398-3400 (2011). doi: 10.1364/OL.36.003398
[39] Lacava, C. et al. Si-rich silicon nitride for nonlinear signal processing applications. Scientific Reports 7, 22 (2017). doi: 10.1038/s41598-017-00062-6
[40] Lamy, M. et al. Si-rich Si nitride waveguides for optical transmissions and toward wavelength conversion around 2 μm. Applied Optics 58, 5165-5169 (2019). doi: 10.1364/AO.58.005165
[41] Karim, M. R. et al. Study of highly coherent mid-infrared supercontinuum generation in CMOS compatible Si-rich SiN tapered waveguide. Journal of Lightwave Technology 40, 4300-4310 (2022). doi: 10.1109/JLT.2022.3157792
[42] Lin, G. R. et al. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s. Scientific Reports 5, 9611 (2015). doi: 10.1038/srep09611
[43] Kuo, Y. H. et al. Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. Optics Express 14, 11721-11726 (2006). doi: 10.1364/OE.14.011721
[44] Chang, L. et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser & Photonics Reviews 12, 1800149 (2018).
[45] Serna, S. et al. Engineering third-order optical nonlinearities in hybrid chalcogenide-on-silicon platform. Optics Letters 44, 5009-5012 (2019). doi: 10.1364/OL.44.005009
[46] Ta’eed, V. G. et al. Integrated all-optical pulse regenerator in chalcogenide waveguides. Optics Letters 30, 2900-2902 (2005). doi: 10.1364/OL.30.002900
[47] Spälter, S. et al. Strong self-phase modulation in planar chalcogenide glass waveguides. Optics Letters 27, 363-365 (2002). doi: 10.1364/OL.27.000363
[48] Choi, J. W. et al. Nonlinear characterization of GeSbS chalcogenide glass waveguides. Scientific Reports 6, 39234 (2016). doi: 10.1038/srep39234
[49] Deckoff-Jones, S. et al. Enhancing SiN waveguide optical nonlinearity via hybrid GaS integration. Journal of Optics 23, 025802 (2021). doi: 10.1088/2040-8986/abe7d7
[50] Autere, A. et al. Nonlinear optics with 2D layered materials. Advanced Materials 30, 1705963 (2018). doi: 10.1002/adma.201705963
[51] Wen, X. L., Gong, Z. B. & Li, D. H. Nonlinear optics of two-dimensional transition metal dichalcogenides. InfoMat 1, 317-337 (2019). doi: 10.1002/inf2.12024
[52] Li, Y. et al. Black phosphorus: broadband nonlinear optical absorption and application. Laser Physics Letters 15, 025301 (2018). doi: 10.1088/1612-202X/aa94e3
[53] Okamoto, Katsunari. Fundamentals of optical waveguides. Elsevier, (2021).
[54] Weismann, M. & Panoiu, N. C. Theoretical and computational analysis of second- and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers. Physical Review B 94, 035435 (2016). doi: 10.1103/PhysRevB.94.035435
[55] Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Physical Review B 75, 205418 (2007). doi: 10.1103/PhysRevB.75.205418
[56] Wunsch, B. et al. Dynamical polarization of graphene at finite doping. New Journal of Physics 8, 318 (2006). doi: 10.1088/1367-2630/8/12/318
[57] Zhang, J. H., Cassan, E. & Zhang, X. L. Enhanced mid-to-near-infrared second harmonic generation in silicon plasmonic microring resonators with low pump power. Photonics Research 2, 143-149 (2014). doi: 10.1364/PRJ.2.000143
[58] Li, Y. L. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Physical Review B 90, 205422 (2014). doi: 10.1103/PhysRevB.90.205422
[59] He, J. J. et al. Low-loss integrated nanophotonic circuits with layered semiconductor materials. Nano Letters 21, 2709-2718 (2021). doi: 10.1021/acs.nanolett.0c04149
[60] Pelgrin, V. et al. Boosting the SiN nonlinear photonic platform with transition metal dichalcogenide monolayers. Optics Letters 47, 734-737 (2022). doi: 10.1364/OL.440462
[61] Datta, I. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nature Photonics 14, 256-262 (2020). doi: 10.1038/s41566-020-0590-4
[62] Boyd, R. W. Nonlinear Optics. 3rd edn. (Amsterdam: Elsevier, 2008).
[63] Agrawal, G. P. Nonlinear Fiber Optics. 6th edn. (New York: Academic, 2019).
[64] Osgood, R. M. et al. Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires. Advances in Optics and Photonics 1, 162-235 (2009). doi: 10.1364/AOP.1.000162
[65] Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics 78, 1135-1184 (2006). doi: 10.1103/RevModPhys.78.1135
[66] Butcher, P. N. & Cotter, D. The Elements of Nonlinear Optics. (New York: Cambridge University Press, 1991).
[67] Hult, J. A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. Journal of Lightwave Technology 25, 3770-3775 (2007). doi: 10.1109/JLT.2007.909373
[68] Lafforgue, C. et al. Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform. Photonics Research 8, 352-358 (2020). doi: 10.1364/PRJ.379555
[69] Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004). doi: 10.1126/science.1102896
[70] Ottaviano, L. et al. Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Materials 4, 045013 (2017). doi: 10.1088/2053-1583/aa8764
[71] O’Neill, A., Khan, U. & Coleman, J. N. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chemistry of Materials 24, 2414-2421 (2012). doi: 10.1021/cm301515z
[72] Chen, W. et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. Journal of the American Chemical Society 137, 15632-15635 (2015). doi: 10.1021/jacs.5b10519
[73] Chen, Y., Gong, X. L. & Gai, J. G. Progress and challenges in transfer of large‐area graphene films. Advanced Science 3, 1500343 (2016). doi: 10.1002/advs.201500343
[74] Gupta, P. et al. A facile process for soak-and-peel delamination of CVD graphene from substrates using water. Scientific Reports 4, 3882 (2014). doi: 10.1038/srep03882
[75] Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials 1, 011002 (2014). doi: 10.1088/2053-1583/1/1/011002
[76] Jung, S. et al. Reduction of water-molecule-induced current-voltage hysteresis in graphene field effect transistor with semi-dry transfer using flexible supporter. Journal of Applied Physics 125, 184302 (2019). doi: 10.1063/1.5089494
[77] Kuppadakkath, A. et al. Direct growth of monolayer MoS2 on nanostructured silicon waveguides. Nanophotonics 11, 4397-4408 (2022). doi: 10.1515/nanoph-2022-0235
[78] Liu, N. et al. Silicon nitride waveguides with directly grown WS2 for efficient second-harmonic generation. Nanoscale 14, 49-54 (2022). doi: 10.1039/D1NR06216F
[79] Bonaccorso, F. et al. Graphene photonics and optoelectronics. Nature Photonics 4, 611-622 (2010). doi: 10.1038/nphoton.2010.186
[80] Cheng, J. L., Vermeulen, N. & Sipe, J. E. Third order optical nonlinearity of graphene. New Journal of Physics 16, 053014 (2014). doi: 10.1088/1367-2630/16/5/053014
[81] Castro Neto, A. H. et al. The electronic properties of graphene. Reviews of Modern Physics 81, 109-162 (2009). doi: 10.1103/RevModPhys.81.109
[82] Xia, F. N. et al. Two-dimensional material nanophotonics. Nature Photonics 8, 899-907 (2014). doi: 10.1038/nphoton.2014.271
[83] Ribeiro-Soares, J. et al. Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B 90, 115438 (2014). doi: 10.1103/PhysRevB.90.115438
[84] You, J. W. et al. Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics 8, 63-97 (2018). doi: 10.1515/nanoph-2018-0106
[85] Mennel, L., Paur, M. & Mueller, T. Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. APL Photonics 4, 034404 (2019). doi: 10.1063/1.5051965
[86] Ribeiro-Soares, J. et al. Second harmonic generation in WSe2. 2D Materials 2, 045015 (2015). doi: 10.1088/2053-1583/2/4/045015
[87] Nan, H. Y. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8, 5738-5745 (2014). doi: 10.1021/nn500532f
[88] Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nature Photonics 12, 430-436 (2018). doi: 10.1038/s41566-018-0175-7
[89] Säynätjoki, A. et al. Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano 7, 8441-8446 (2013). doi: 10.1021/nn4042909
[90] Lee, C. C., Miller, J. M. & Schibli, T. R. Doping-induced changes in the saturable absorption of monolayer graphene. Applied Physics B 108, 129-135 (2012). doi: 10.1007/s00340-012-5095-5
[91] Zhang, Y. et al. Doping-induced second-harmonic generation in centrosymmetric graphene from quadrupole response. Physical Review Letters 122, 047401 (2019). doi: 10.1103/PhysRevLett.122.047401
[92] Shi, H. F. et al. Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction. Optics Express 22, 19375-19385 (2014). doi: 10.1364/OE.22.019375
[93] Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 5, 722-726 (2010). doi: 10.1038/nnano.2010.172
[94] Rhim, S. H., Kim, Y. S. & Freeman, A. J. Strain-induced giant second-harmonic generation in monolayered 2H -MoX2 (X = S, Se, Te). Applied Physics Letters 107, 241908 (2015). doi: 10.1063/1.4938120
[95] Liang, J. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Letters 17, 7539-7543 (2017). doi: 10.1021/acs.nanolett.7b03476
[96] Mennel, L. et al. Optical imaging of strain in two-dimensional crystals. Nature Communications 9, 516 (2018). doi: 10.1038/s41467-018-02830-y
[97] Liang, J. et al. Universal imaging of full strain tensor in 2D crystals with third-harmonic generation. Advanced Materials 31, 1808160 (2019). doi: 10.1002/adma.201808160
[98] Dai, Y. Y. et al. Broadband Plasmon-enhanced four-wave mixing in monolayer MoS2. Nano Letters 21, 6321-6327 (2021). doi: 10.1021/acs.nanolett.1c02381
[99] Wu, J. Y. et al. Graphene oxide waveguide and micro-ring resonator polarizers. Laser & Photonics Reviews 13, 1900056 (2019).
[100] Bao, Q. L. et al. Broadband graphene polarizer. Nature Photonics 5, 411-415 (2011). doi: 10.1038/nphoton.2011.102
[101] Tan, Y. et al. Polarization-dependent optical absorption of MoS2 for refractive index sensing. Scientific Reports 4, 7523 (2014). doi: 10.1038/srep07523
[102] Wu, J. H. et al. Two‐dimensional materials for integrated photonics: recent advances and future challenges. Small Science 1, 2000053 (2021). doi: 10.1002/smsc.202000053
[103] Malouf, A. et al. Two-photon absorption and saturable absorption of mid-IR in graphene. Applied Physics Letters 114, 091111 (2019). doi: 10.1063/1.5088641
[104] Lan, Y. Z. & Bao, X. H. First-principles study of the excitonic effect on two-photon absorption of semiconductors: theory and application to MoS2 and WS2 monolayers. Physical Review B 101, 195437 (2020). doi: 10.1103/PhysRevB.101.195437
[105] Qiu, D. Y., Da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Physical Review Letters 111, 216805 (2013). doi: 10.1103/PhysRevLett.111.216805
[106] Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B 86, 115409 (2012). doi: 10.1103/PhysRevB.86.115409
[107] Grillet, C. et al. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Optics Express 20, 22609-22615 (2012). doi: 10.1364/OE.20.022609
[108] Yu, S. L. et al. All-optical graphene modulator based on optical Kerr phase shift. Optica 3, 541-544 (2016). doi: 10.1364/OPTICA.3.000541
[109] Liu, X. P. et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photonics 4, 557-560 (2010). doi: 10.1038/nphoton.2010.119
[110] Azzini, S. et al. From classical four-wave mixing to parametric fluorescence in silicon microring resonators. Optics Letters 37, 3807-3809 (2012). doi: 10.1364/OL.37.003807
[111] Gajda, A. et al. Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction. Optics Express 20, 13100-13107 (2012). doi: 10.1364/OE.20.013100
[112] Ferrera, M. et al. Low power four wave mixing in an integrated, micro-ring resonator with Q = 12 million. Optics Express 17, 14098-14103 (2009). doi: 10.1364/OE.17.014098
[113] Absil, P. P. et al. Wavelength conversion in GaAs micro-ring resonators. Optics Letters 25, 554-556 (2000). doi: 10.1364/OL.25.000554
[114] Wang, X. Y. et al. Silicon/silicon-rich nitride hybrid-core waveguide for nonlinear optics. Optics Express 27, 23775-23784 (2019). doi: 10.1364/OE.27.023775
[115] Maiti, R. et al. Loss and coupling tuning via heterogeneous integration of MoS2 layers in silicon photonics [Invited]. Optical Materials Express 9, 751-759 (2019). doi: 10.1364/OME.9.000751
[116] Wei, G. H. et al. Silicon-nitride photonic circuits interfaced with monolayer MoS2. Applied Physics Letters 107, 091112 (2015). doi: 10.1063/1.4929779
[117] Ferrera, M. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nature Photonics 2, 737-740 (2008). doi: 10.1038/nphoton.2008.228
[118] Series, S. & Photonics, I. N. Waveguide Nonlinear-Optic Devices. (Berlin: Springer, 2003).
[119] Li, Z. Q. et al. Modified model for four-wave mixing-based wavelength conversion in silicon micro-ring resonators. Optics Communications 284, 2215-2221 (2011).
[120] Wu, J. Y. et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small 16, 1906563 (2020).
[121] Vermeulen, N. et al. Opportunities for wideband wavelength conversion in foundry-compatible silicon waveguides covered with graphene. IEEE Journal of Selected Topics in Quantum Electronics 22, 8100113 (2016).
[122] Alexander, K. et al. Electrically tunable optical nonlinearities in graphene- covered SiN waveguides characterized by four-wave mixing. ACS Photonics 4, 3039-3044 (2017). doi: 10.1021/acsphotonics.7b00559
[123] Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296-299 (2022). doi: 10.1126/science.add8544
[124] Wang, W. Q., Wang, L. R. & Zhang, W. F. Advances in soliton microcomb generation. Advanced Photonics 2, 034001 (2020).
[125] Zhang, J. H. et al. Stretching the spectra of Kerr frequency combs with self-adaptive boundary silicon waveguides. Advanced Photonics 2, 046001 (2020).
[126] Yao, B. C. et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature 558, 410-414 (2018). doi: 10.1038/s41586-018-0216-x
[127] Javerzac-Galy, C. et al. Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators. Nano Letters 18, 3138-3146 (2018). doi: 10.1021/acs.nanolett.8b00749
[128] Qin, C. Y. et al. Electrically controllable laser frequency combs in graphene-fibre microresonators. Light:Science & Applications 9, 185 (2020).
[129] Tan, T. et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nature Communications 12, 6716 (2021). doi: 10.1038/s41467-021-26740-8
[130] Green, W. M. et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Optics Express 15, 17106-17113 (2007). doi: 10.1364/OE.15.017106
[131] Baehr-Jones, T. et al. Ultralow drive voltage silicon traveling-wave modulator. Optics Express 20, 12014-12020 (2012). doi: 10.1364/OE.20.012014
[132] Alloatti, L. et al. 100 GHz silicon-organic hybrid modulator. Light: Science & Applications 3, e173 (2014).
[133] Zhang, J. T. et al. Second harmonic generation in 2D layered materials. 2D Materials 7, 042002 (2020). doi: 10.1088/2053-1583/abaf68
[134] Cheng, J. L. , Vermeulen, N. & Sipe, J. E. DC current induced second order optical nonlinearity in graphene. Optics Express 22, 15868-15876 (2014).
[135] Bykov, A. Y. et al. Second harmonic generation in multilayer graphene induced by direct electric current. Physical Review B 85, 121413(R) (2012).
[136] Yu, H. K. et al. Charge-induced second-harmonic generation in bilayer WSe2. Nano Letters 15, 5653-5657 (2015). doi: 10.1021/acs.nanolett.5b02547
[137] Klein, J. et al. Electric-field switchable second-harmonic generation in bilayer MoS2 by inversion symmetry breaking. Nano Letters 17, 392-398 (2017). doi: 10.1021/acs.nanolett.6b04344
[138] Zhang, M. W. et al. Strong second harmonic generation from bilayer graphene with symmetry breaking by redox-governed charge doping. Nano Letters 22, 4287-4293 (2022). doi: 10.1021/acs.nanolett.1c04359
[139] Rosa, H. G. et al. Characterization of the second- and third-harmonic optical susceptibilities of atomically thin tungsten diselenide. Scientific Reports 8, 10035 (2018). doi: 10.1038/s41598-018-28374-1
[140] Abdelwahab, I. et al. Giant second-harmonic generation in ferroelectric NbOI2. Nature Photonics 16, 644-650 (2022). doi: 10.1038/s41566-022-01021-y
[141] Guo, Q. B. et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613, 53-59 (2023). doi: 10.1038/s41586-022-05393-7
[142] Fryett, T. K. et al. Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2. 2D Materials 4, 015031 (2017).
[143] Chen, H. T. et al. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light:Science & Applications 6, e17060 (2017).
[144] Chen, J. H. et al. Tunable and enhanced light emission in hybrid WS2- optical-fiber-nanowire structures. Light:Science & Applications 8, 8 (2019).
[145] Gan, X. T. et al. Microwatts continuous-wave pumped second harmonic generation in few-and mono-layer GaSe. Light:Science & Applications 7, 17126 (2018).
[146] Jiang, B. Q. et al. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light:Science & Applications 9, 63 (2020).
[147] Hao, Z. et al. Continuous-wave pumped frequency upconversions in an InSe-integrated microfiber. Optics Letters 46, 733-736 (2021). doi: 10.1364/OL.413451
[148] Bruch, A. W. et al. On-chip χ(2) microring optical parametric oscillator. Optica 6, 1361-1366 (2019). doi: 10.1364/OPTICA.6.001361
[149] Elkus, B. S., Abdelsalam, K., Fathpour, S., Kumar, P. & Kanter, G. S. Quantum-correlated photon-pair generation via cascaded nonlinearity in an ultra-compact lithium-niobate nano-waveguide. Optics Express 28, 39963-39975 (2020). doi: 10.1364/OE.411575
[150] Malard, L. M. et al. Raman spectroscopy in graphene. Physics Reports 473, 51-87 (2009). doi: 10.1016/j.physrep.2009.02.003
[151] Zhang, X. et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews 44, 2757-2785 (2015). doi: 10.1039/C4CS00282B
[152] Gomulya, W. et al. Enhanced Raman scattering of graphene using double resonance in silicon photonic crystal nanocavities. Applied Physics Letters 113, 081101 (2018). doi: 10.1063/1.5042798
[153] Gan, X. T. et al. Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Letters 12, 5626-5631 (2012). doi: 10.1021/nl302746n
[154] Joannopoulos, J. D. et al. Photonic Crystals: Molding the Flow of Light. 2nd edn. (Princeton: Princeton University Press, 2008).
[155] Gan, X. T. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Applied Physics Letters 103, 181119 (2013).
[156] Li, Z. et al. Externally pumped photonic chip‐based ultrafast Raman soliton source. Laser & Photonics Reviews 15, 2000301 (2021).
[157] Wang, Y. D. et al. Optical control of high-harmonic generation at the atomic thickness. Nano Letters 22, 8455-8462 (2022). doi: 10.1021/acs.nanolett.2c02711
[158] Winzer, T. et al. Absorption saturation in optically excited graphene. Applied Physics Letters 101, 221115 (2012). doi: 10.1063/1.4768780
[159] Demongodin, P. et al. Ultrafast saturable absorption dynamics in hybrid graphene/Si3N4 waveguides. APL Photonics 4, 076102 (2019). doi: 10.1063/1.5094523
[160] Wang, H. et al. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research 8, 468-474 (2020).
[161] Wang, J. Q. et al. Saturable absorption in graphene-on-waveguide devices. Applied Physics Express 12, 032003 (2019). doi: 10.7567/1882-0786/ab02ca
[162] Takahashi, M. et al. Saturable absorption by vertically inserted or overlaid monolayer graphene in optical waveguide for all-optical switching circuit. IEEE Photonics Journal 5, 6602109 (2013). doi: 10.1109/JPHOT.2013.2284256
[163] Liu, H. et al. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber. Optics Letters 39, 4591-4594 (2014). doi: 10.1364/OL.39.004591
[164] Yao, B. C. et al. Graphene Q-switched distributed feedback fiber lasers with narrow linewidth approaching the transform limit. Optics Express 25, 8202-8211 (2017). doi: 10.1364/OE.25.008202
[165] Wang, L. et al. Ultrafast terahertz transparency boosting in graphene meta-cavities. Nanophotonics 11, 4899-4907 (2022).
[166] Yan, P. G. et al. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser. IEEE Photonics Technology Letters 27, 264-267 (2015).
[167] Zhao, L. M. et al. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Optics Letters 35, 3622-3624 (2010). doi: 10.1364/OL.35.003622
[168] Mao, D. et al. WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 μm. Optics Express 23, 27509-27519 (2015).
[169] Zhang, H. et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Optics Express 22, 7249-7260 (2014). doi: 10.1364/OE.22.007249
[170] Hisyam, M. B. et al. Generation of mode-locked ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber. IEEE Journal of Selected Topics in Quantum Electronics 23, 39-43 (2017). doi: 10.1109/JSTQE.2016.2532270
[171] Gao, L. et al. Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: from anomalous dispersion to normal dispersion. IEEE Photonics Journal 7, 3300108 (2015).
[172] Yan, P. G. et al. A practical topological insulator saturable absorber for mode-locked fiber laser. Scientific Reports 5, 8690 (2015). doi: 10.1038/srep08690
[173] Liu, W. J. et al. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Optics Express 25, 2950-2959 (2017). doi: 10.1364/OE.25.002950
[174] Liu, W. J. et al. CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology 29, 394002 (2018).
[175] Zhang, B. T. et al. Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers. Laser & Photonics Reviews 14, 1900240 (2020).
[176] He, M. M. et al. Enhanced nonlinear saturable absorption of MoS2/Graphene nanocomposite films. The Journal of Physical Chemistry C 121, 27147-27153 (2017). doi: 10.1021/acs.jpcc.7b08850
[177] Ma, C. Y. et al. Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Applied Physics Reviews 6, 04130 (2019).
[178] He, J. S. et al. 2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics. Materials Horizons 7, 2903-2921 (2020).
[179] Duong Dinh, T. T. et al. Mid-infrared Fourier-transform spectrometer based on metamaterial lateral cladding suspended silicon waveguides. Optics Letters 47, 810-813 (2022). doi: 10.1364/OL.450719
[180] Qiu, C. Y. et al. Recent advances in integrated optical directed logic operations for high performance optical computing: a review. Frontiers of Optoelectronics 15, 1 (2022). doi: 10.1007/s12200-022-00001-y
[181] Du, L. J. et al. Giant anisotropic photonics in the 1D van der Waals semiconductor fibrous red phosphorus. Nature Communications 12, 4822 (2021). doi: 10.1038/s41467-021-25104-6
[182] Shafi, A. M. et al. Inducing strong light-matter coupling and optical anisotropy in monolayer MoS2 with high refractive index nanowire. ACS Applied Materials & Interfaces 14, 31140-31147 (2022).
[183] Uddin, M. G. et al. Engineering the dipole orientation and symmetry breaking with mixed-dimensional heterostructures. Advanced Science 9, 2200082 (2022). doi: 10.1002/advs.202200082
[184] Chen, H. et al. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Optics Letters 42, 4279-4282 (2017). doi: 10.1364/OL.42.004279
[185] Hsu, W. T. et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8, 2951-2958 (2014). doi: 10.1021/nn500228r
[186] Shafi, A. M. et al. Direct epitaxial growth of InP nanowires on MoS2 with strong nonlinear optical response. Chemistry of Materials 34, 9055-9061 (2022). doi: 10.1021/acs.chemmater.2c01602
[187] Wang, Y. D. et al. Probing electronic states in monolayer semiconductors through static and transient third-harmonic spectroscopies. Advanced Materials 34, 2107104 (2022). doi: 10.1002/adma.202107104
[188] Hu, G. H. et al. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Science Advances 6, eaba5029 (2020). doi: 10.1126/sciadv.aba5029
[189] Lauria, S. & Saleh, M. F. Mixing second- and third-order nonlinear interactions in nanophotonic lithium-niobate waveguides. Physical Review A 105, 043511 (2022). doi: 10.1103/PhysRevA.105.043511
[190] Grelin, J., Ghibaudo, E. & Broquin, J. E. Study of deeply buried waveguides: a way towards 3D integration. Materials Science and Engineering:B 149, 185-189 (2008). doi: 10.1016/j.mseb.2007.11.013
[191] Broquin, J. E. Ion-exchanged integrated devices. Proceedings of SPIE 4277, Integrated Optics Devices V. San Jose, CA, United States: SPIE, 2001, 105.
[192] Broquin, J. E. Glass integrated optics: state of the art and position toward other technologies. Proceedings of SPIE 6475, Integrated Optics: Devices, Materials, and Technologies XI. San Jose, California, United States: SPIE, 2007, 647507.
[193] Choudhary, A. et al. Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers. IEEE Photonics Technology Letters 27, 646-649 (2015).
[194] Guo, X. D. et al. Efficient all-optical plasmonic modulators with atomically thin van der Waals heterostructures. Advanced Materials 32, 1907105 (2020). doi: 10.1002/adma.201907105
[195] Cui, X. Q. et al. On-chip photonics and optoelectronics with a van der Waals material dielectric platform. Nanoscale 14, 9459-9465 (2022). doi: 10.1039/D2NR01042A
[196] Liu, Z. J. et al. Giant enhancement of continuous wave second harmonic generation from few-layer GaSe coupled to high- Q Quasi bound states in the continuum. Nano Letters 21, 7405-7410 (2021).
[197] Das, S. et al. Ultrafast transient sub-bandgap absorption of monolayer MoS2. Light: Science & Applications 10, 27 (2021).
[198] Wang, Y. D. et al. Giant all-optical modulation of second-harmonic generation mediated by dark excitons. ACS Photonics 8, 2320-2328 (2021). doi: 10.1021/acsphotonics.1c00466
[199] Hong, H. et al. Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nature Photonics 15, 510-515 (2021). doi: 10.1038/s41566-021-00801-2
[200] Du, L. J. et al. Giant valley coherence at room temperature in 3R WS2 with Broken inversion symmetry. Research 2019, 6494565 (2019).
[201] Humbert, G. et al. Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express 14, 1596-1603 (2006). doi: 10.1364/OE.14.001596
[202] Hult, J., Watt, R. S. & Kaminski, C. F. High bandwidth absorption spectroscopy with a dispersed supercontinuum source. Optics Express 15, 11385-11395 (2007). doi: 10.1364/OE.15.011385
[203] Yang, Q. F. et al. Microresonator soliton dual-comb spectroscopy. Proceedings of 2017 Conference on Lasers and Electro-Optics. San Jose, CA, USA: IEEE, 2017.
[204] Wang, J. D. et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Research 8, 1964-1972 (2020). doi: 10.1364/PRJ.408923
[205] Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176-1180 (2016). doi: 10.1126/science.aad8532
[206] Woodward, J. T. et al. Supercontinuum sources for metrology. Metrologia 46, S277 (2009). doi: 10.1088/0026-1394/46/4/S27
[207] Chen, Y. et al. Nanoscale all-optical logic devices. Science China Physics,Mechanics & Astronomy 62, 44201 (2019).
[208] Kirchain, R. & Kimerling, L. A roadmap for nanophotonics. Nature Photonics 1, 303-305 (2007). doi: 10.1038/nphoton.2007.84
[209] Liu, W. L. et al. A fully reconfigurable photonic integrated signal processor. Nature Photonics 10, 190-195 (2016). doi: 10.1038/nphoton.2015.281
[210] Sankar Rao, D. G., Swarnakar, S. & Kumar, S. Performance analysis of all-optical NAND, NOR, and XNOR logic gates using photonic crystal waveguide for optical computing applications. Optical Engineering 59, 057101 (2020).
[211] Zhang, Y. et al. Coherent modulation of chiral nonlinear optics with crystal symmetry. Light:Science & Applications 11, 216 (2022).
[212] Guo, Q. S. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nature Photonics 16, 625-631 (2022). doi: 10.1038/s41566-022-01044-5
[213] Zhang, Y. et al. Chirality logic gates. Science Advances 8, eabq8246 (2022). doi: 10.1126/sciadv.abq8246
[214] Sharping, J. E. et al. All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion. Optics Express 13, 7872-7877 (2005).
[215] Lin, Q. et al. 40-gb/s optical switching and wavelength multicasting in a two-pump parametric device. IEEE Photonics Technology Letters 17, 2376-2378 (2005).
[216] Hansryd, J. et al. Fiber- based optical parametric amplifiers and their applications. IEEE Journal of Selected Topics in Quantum Electronics 8, 506-520 (2002). doi: 10.1109/JSTQE.2002.1016354
[217] Wang, Y. D. et al. Difference frequency generation in monolayer MoS2. Nanoscale 12, 19638-19643 (2020). doi: 10.1039/D0NR01994A
[218] Sun, Z. P. Electrically tuned nonlinearity. Nature Photonics 12, 383-385 (2018).
[219] Dai, Y. Y. et al. Electrical control of interband resonant nonlinear optics in monolayer MoS2. ACS Nano 14, 8442-8448 (2020).
[220] Lau, K. Y. et al. Scalable graphene electro-optical modulators for all-fibre pulsed lasers. Nanoscale 13, 9873-9880 (2021). doi: 10.1039/D0NR08784J
[221] Bogusławski, J. et al. Graphene actively mode-locked lasers. Advanced Functional Materials 28, 1801539 (2018). doi: 10.1002/adfm.201801539
[222] Yao, B. C. et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nature Photonics 12, 22-28 (2018). doi: 10.1038/s41566-017-0054-7
[223] An, N. et al. Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Letters 20, 6473-6480 (2020). doi: 10.1021/acs.nanolett.0c02174
[224] Yao, B. C. et al. Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Letters 17, 4996-5002 (2017). doi: 10.1021/acs.nanolett.7b02176
[225] Solntsev, A. S. & Sukhorukov, A. A. Path-entangled photon sources on nonlinear chips. Reviews in Physics 2, 19-31 (2017). doi: 10.1016/j.revip.2016.11.003
[226] Feng, L. T., Guo, G. C. & Ren, X. F. Progress on integrated quantum photonic sources with silicon. Advanced Quantum Technologies 3, 1900058 (2020). doi: 10.1002/qute.201900058
[227] Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Physical Review Letters 86, 5188-5191 (2001). doi: 10.1103/PhysRevLett.86.5188
[228] Briegel, H. J. et al. Measurement-based quantum computation. Nature Physics 5, 19-26 (2009). doi: 10.1038/nphys1157
[229] Qiang, X. G. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nature Photonics 12, 534-539 (2018). doi: 10.1038/s41566-018-0236-y
[230] Lu, C. Y. et al. Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. Physical Review Letters 102, 030502 (2009). doi: 10.1103/PhysRevLett.102.030502
[231] Giovannetti, V. , Lloyd, S. & MacCone, L. Quantum metrology. Physical Review Letters 96, 010401 (2006).
[232] Turunen, M. et al. Quantum photonics with layered 2D materials. Nature Reviews Physics 4, 219-236 (2022).
[233] Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598-4810 (2015).
[234] Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology 9, 780-793 (2014). doi: 10.1038/nnano.2014.215
[235] Martinez, A. & Sun, Z. P. Nanotube and graphene saturable absorbers for fibre lasers. Nature Photonics 7, 842-845 (2013). doi: 10.1038/nphoton.2013.304
[236] Sun, Z. P., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nature Photonics 10, 227-238 (2016). doi: 10.1038/nphoton.2016.15
[237] Cao, Z. X. et al. Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity. Light:Science & Applications 8, 107 (2019).
[238] Guo, Y. H. et al. A monolithic graphene‐functionalized microlaser for multispecies gas detection. Advanced Materials 34, 2207777 (2022). doi: 10.1002/adma.202207777
[239] Guo, Y. H. et al. Gas detection in a graphene based dual-mode fiber laser microcavity. Sensors and Actuators B:Chemical 348, 130694 (2021). doi: 10.1016/j.snb.2021.130694