[1] Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 1, 97-105 (2007). doi: 10.1038/nphoton.2007.3
[2] Vitiello, M. S. et al. Quantum cascade lasers: 20 years of challenges. Opt. Express 23, 5167-5182 (2015). doi: 10.1364/OE.23.005167
[3] Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156-159 (2002). doi: 10.1038/417156a
[4] Brandstetter, M. et al. High power terahertz quantum cascade lasers with symmetric wafer bonded active regions. Appl. Phys. Lett. 103, 171113 (2013). doi: 10.1063/1.4826943
[5] Li, L. H. et al. Terahertz quantum cascade lasers with > 1 W output powers. Electron. Lett. 50, 309-311 (2014).
[6] Wang, X. M. et al. High-power terahertz quantum cascade lasers with ~0.23 W in continuous wave mode. AIP Adv. 6, 075210 (2016). doi: 10.1063/1.4959195
[7] Jin, Y. et al. High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings. Nat. Commun. 9, 1407 (2018). doi: 10.1038/s41467-018-03697-9
[8] Rösch, M. et al. Octave-spanning semiconductor laser. Nat. Photonics 9, 42-47 (2015). doi: 10.1038/nphoton.2014.279
[9] Kumar, S. Recent progress in terahertz quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 17, 38-47 (2011). doi: 10.1109/JSTQE.2010.2049735
[10] Vitiello, M. S. & Tredicucci, A. Tunable emission in THz quantum cascade lasers. IEEE Trans. Terahertz Sci. Technol. 1, 76-84 (2011). doi: 10.1109/TTHZ.2011.2159543
[11] Amanti, M. I. et al. Low-divergence single-mode terahertz quantum cascade laser. Nat. Photonics 3, 586-590 (2009). doi: 10.1038/nphoton.2009.168
[12] Castellano, F. et al. Distributed feedback terahertz frequency quantum cascade lasers with dual periodicity gratings. Appl. Phys. Lett. 106, 011103 (2015). doi: 10.1063/1.4905338
[13] Biasco, S. et al. Continuous-wave highly-efficient low-divergence terahertz wire lasers. Nat. Commun. 9, 1122 (2018). doi: 10.1038/s41467-018-03440-4
[14] Xu, G. Y. et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures. Nat. Commun. 3, 952 (2012). doi: 10.1038/ncomms1958
[15] Liang, G. Z. et al. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers. Opt. Express 21, 31872-31882 (2013). doi: 10.1364/OE.21.031872
[16] Chassagneux, Y. et al. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions. Nature 457, 174-178 (2009). doi: 10.1038/nature07636
[17] Chassagneux, Y. et al. Graded photonic crystal terahertz quantum cascade lasers. Appl. Phys. Lett. 96, 031104 (2010). doi: 10.1063/1.3273056
[18] Halioua, Y. et al. THz quantum cascade lasers operating on the radiative modes of a 2D photonic crystal. Opt. Lett. 39, 3962-3965 (2014). doi: 10.1364/OL.39.003962
[19] Vitiello, M. S. et al. Photonic quasi-crystal terahertz lasers. Nat. Commun. 5, 5884 (2014). doi: 10.1038/ncomms6884
[20] Biasco, S. et al. Multimode, aperiodic terahertz surface-emitting laser resonators. Photonics 3, 32 (2016). doi: 10.3390/photonics3020032
[21] Wiersma, D. S. Disordered photonics. Nature 7, 188-196 (2013). http://www.nature.com/articles/nphoton.2013.29
[22] Rousseau, M. Statistical properties of optical fields scattered by random media. Application to rotating ground glass. J. Opt. Soc. Am. 61, 1307-1316 (1971). doi: 10.1364/JOSA.61.001307
[23] Wiersma, D. S. et al. Localization of light in a disordered medium. Nature 390, 671-673 (1997). doi: 10.1038/37757
[24] Mafi, A. et al. Transverse Anderson localization in disordered glass optical fibers: a review. Materials 7, 5520-5527 (2014). doi: 10.3390/ma7085520
[25] García, P. D. et al. Photonic glass: a novel random material for light. Adv. Mater. 19, 2597-2602 (2007). doi: 10.1002/adma.200602426
[26] Yin, H. W. et al. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw. Proc. Natl. Acad. Sci. U.S.A. 109, 10798-10801 (2012). doi: 10.1073/pnas.1204383109
[27] Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photonics 7, 197-204 (2013). doi: 10.1038/nphoton.2013.30
[28] Ghofraniha, N. et al. Biomimetic random lasers with tunable spatial and temporal coherence. Adv. Opt. Mater. 4, 1998-2003 (2016). doi: 10.1002/adom.201600649
[29] Tsai, C. Y. et al. Magnetically controllable random lasers. Adv. Mater. Technol. 2, 1700170 (2017). doi: 10.1002/admt.201700170
[30] Wiersma, D. S. & Cavalieri, S. A temperature-tunable random laser. Nature 414, 708-709 (2001). doi: 10.1038/414708a
[31] Zhai, T. R. et al. A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale 7, 2235-2240 (2015). doi: 10.1039/C4NR06632D
[32] Gottardo, S. et al. Quasi-two-dimensional diffusive random laser action. Phys. Rev. Lett. 93, 263901 (2004). doi: 10.1103/PhysRevLett.93.263901
[33] Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 4, 359-367 (2008). doi: 10.1038/nphys971
[34] Letokhov, V. S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 26, 835-840 (1968). http://adsabs.harvard.edu/abs/1968JETP...26..835L
[35] Wiersma, D. S. & Lagendijk, A. Light diffusion with gain and random lasers. Phys. Rev. E 54, 4256-4265 (1996). doi: 10.1103/PhysRevE.54.4256
[36] Cao, H. Review on latest developments in random lasers with coherent feedback. J. Phys. A 38, 10497-10536 (2005). doi: 10.1088/0305-4470/38/49/004
[37] Andreasen, J., Sebbah, P. & Vanneste, C. Nonlinear effects in random lasers. J. Opt. Soc. Am. B 28, 2947-2955 (2011). doi: 10.1364/JOSAB.28.002947
[38] Lawandy, N. M. et al. Laser action in strongly scattering media. Nature 368, 436-438 (1994). doi: 10.1038/368436a0
[39] Gouedard, C. et al. Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders. J. Opt. Soc. Am. B 10, 2358-2363 (1993). doi: 10.1364/JOSAB.10.002358
[40] Song, Q. H. et al. Random lasing in bone tissue. Opt. Lett. 35, 1425-1427 (2010). doi: 10.1364/OL.35.001425
[41] Liang, H. K. et al. Electrically pumped mid-infrared random lasers. Adv. Mater. 25, 6859-6863 (2013). doi: 10.1002/adma.201303122
[42] Schönhuber, S. et al. Random lasers for broadband directional emission. Optica 3, 1035-1038 (2016). doi: 10.1364/OPTICA.3.001035
[43] Zeng, Y. Q. et al. Designer multimode localized random lasing in amorphous lattices at terahertz frequencies. ACS Photonics 3, 2453-2460 (2016). doi: 10.1021/acsphotonics.6b00711
[44] Zeng, Y. Q. et al. Two-dimensional multimode terahertz random lasing with metal pillars. ACS Photonics 5, 2928-2935 (2018). doi: 10.1021/acsphotonics.8b00260
[45] Agnew, G. et al. Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations. Appl. Phys. Lett. 106, 161105 (2015). doi: 10.1063/1.4918993
[46] Qi, X. Q. et al. Mode selection and tuning mechanisms in coupled-cavity terahertz quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 23, 1200312 (2017).
[47] Amanti, M. I. et al. Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage. New J. Phys. 11, 125022 (2009). doi: 10.1088/1367-2630/11/12/125022
[48] Jiang, X. Y. et al. Coupling, competition, and stability of modes in random lasers. Phys. Rev. B 69, 104202 (2004). doi: 10.1103/PhysRevB.69.104202
[49] Vitiello, M. S. et al. Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations. Appl. Phys. Lett. 89, 021111 (2006). doi: 10.1063/1.2220546
[50] Mahler, L. et al. Tuning a distributed feedback laser with a coupled microcavity. Opt. Express 18, 19185-19191 (2010). doi: 10.1364/OE.18.019185
[51] Castellano, F. et al. Tuning a microcavity-coupled terahertz laser. Appl. Phys. Lett. 107, 261108 (2015). doi: 10.1063/1.4938207
[52] Marcuse, D. Coupled mode theory of optical resonant cavities. IEEE J. Quantum Electron. 21, 1819-1826 (1985). doi: 10.1109/JQE.1985.1072590
[53] Mahler, L. et al. High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell. Appl. Phys. Lett. 96, 191109 (2010). doi: 10.1063/1.3430522
[54] Redding, B., Choma, M. A. & Cao, H. Spatial coherence of random laser emission. Opt. Lett. 36, 3404-3406 (2011). doi: 10.1364/OL.36.003404
[55] Florescu, L. & John, S. Photon statistics and coherence in light emission from a random laser. Phys. Rev. Lett. 93, 013602 (2004). doi: 10.1103/PhysRevLett.93.013602
[56] Cao, H. et al. Photon statistics of random lasers with resonant feedback. Phys. Rev. Lett. 86, 4524-4527 (2001). doi: 10.1103/PhysRevLett.86.4524
[57] Redding, B., Choma, M. A. & Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photonics 6, 355-359 (2012). doi: 10.1038/nphoton.2012.90
[58] Polson, R. C. & Varden, Z. V. Random lasing in human tissues. Appl. Phys. Lett. 85, 1289-1291 (2004). doi: 10.1063/1.1782259
[59] Choe, R. et al. Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI. Med. Phys. 32, 1128-1139 (2005). doi: 10.1118/1.1869612